
1

By Marco Suarez, Jina Anne, Katie Sylor-Miller,
Diana Mounter, and Roy Stanfield

INTRODUCING DESIGN SYSTEMS

By Marco Suarez, Jina Anne, Katie Sylor-Miller, Diana Mounter, and

Roy Stanfield

A design system unites product teams around
a common visual language. It reduces design
debt, accelerates the design process, and
builds bridges between teams working in
concert to bring products to life. Learn how you
can create your design system and help your
team improve product quality while reducing
design debt.

3

Contents
Introducing design systems
The power of scale

Designing your design system
Step by step

Building your design system
A strong foundation

Putting your design system into practice
Better together

Expanding your design system
More than the sum of its parts

The future of design systems
To infinity and beyond

Appendix
More resources

INTRODUCING DESIGN SYSTEMS

Chapter—01

Introducing
design systems
The power of scale
By Marco Suarez

5

In the 1960s, computer technology began outpacing the

speed of software programming. Computers became

faster and cheaper, but software development remained

slow, difficult to maintain, and prone to errors. This gap, and

the dilemma of what to do about it, became known as the

“software crisis."

Figure 1: A UI audit collects the many permutations of simple UI

elements to illustrate how deep in design debt your team is.

In 1968, at the NATO conference on software engineering,

Douglas McIlroy presented component-based development

as a possible solution to the dilemma. Component-based

development provided a way to speed up programming’s

potential by making code reusable, thus making it more

efficient and easier to scale. This lowered the effort and

increased the speed of software development, allowing

https://dbtr.co/software-crisis
https://dbtr.co/nato-1968

INTRODUCING DESIGN SYSTEMS

software to better utilize the power of modern computers.

Now, 50 years later, we’re experiencing a similar challenge,

but this time in design. Design is struggling to scale with the

applications it supports because design is still bespoke—

tailor-made solutions for individual problems.

Have you ever performed a UI audit and found you’re using a

few dozen similar hues of blue, or permutations of the same

button? Multiply this by every piece of UI in your app, and you

begin to realize how inconsistent, incomplete, and difficult to

maintain your design has become.

For design in this state to keep up with the speed of

development, companies could do 1 of 3 things:

01.	 Hire more people

02.	 Design faster

03.	 Create solutions that work for multiple problems

Even with more hands working faster, the reality is bespoke

design simply doesn’t scale. Bespoke design is slow,

inconsistent, and increasingly difficult to maintain over time.

7

Design systems enable teams to build better products faster

by making design reusable—reusability makes scale possible.

This is the heart and primary value of design systems. A design

system is a collection of reusable components, guided by

clear standards, that can be assembled together to build any

number of applications.

For more than 50 years, engineers have operationalized their

work. Now it’s time for design to realize its full potential and

join them.

Scaling design with
systems thinking
You’re probably well aware that design systems have become a

bit of a hot topic in the software industry these days—and for

good reason. Design is scaling. Many businesses are investing

in design as they recognize that the customer experience of

their products offers a competitive advantage, attracts and

retains customers, and reduces support costs.

INTRODUCING DESIGN SYSTEMS

Here are what things usually look like inside a company that’s

investing in design:

•	 The design team is growing

•	 Design is embedded in teams throughout the company,

maybe in multiple locations

•	 Design is playing a key role in all products on all platforms

If you’re a designer, this sort of investment in design may

sound exciting, but with it comes many challenges. How will

you design consistent UIs across platforms when many teams

own various parts of your products? How will you empower all

of these teams to iterate quickly? How will you maintain the

inevitable design debt that will build up as many designers

create new and tailor-made designs?

To understand how creating a design system can address

these challenges, we must understand what design systems

are. Design systems marry two concepts with individual merit,

making something more powerful than its separate parts.

9

“It wasn’t hard to get them to follow the
guidelines, it was hard to get them to agree on
the guidelines.”

Lori Kaplan — ATLASSIAN

Standards

Understanding not only the what, but the why, behind the

design of a system is critical to creating an exceptional user

experience. Defining and adhering to standards is how we

create that understanding. Doing so removes the subjectivity

and ambiguity that often creates friction and confusion within

product teams.

Standards encompass both design and development.

Standardizing things like naming conventions, accessibility

requirements, and file structure will help teams work

consistently and prevent errors.

Visual language is a core part of your design standards.

Defining the purpose and style of color, shape, type, icons,

https://dbtr.co/lori-kaplan-HIG
https://dbtr.co/lori-kaplan-HIG
https://dbtr.co/lori-kaplan-HIG

INTRODUCING DESIGN SYSTEMS 10

space, and motion is essential to creating a brand aligned and

consistent user experience. Every component in your system

incorporates these elements, and they play an integral role in

expressing the personality of your brand.

Without standards, decisions become arbitrary and difficult to

critique. Not only does this not scale, it creates an inconsistent

and frustrating user experience.

Components

Components are portions of reusable code within your system

and they serve as the building blocks of your application’s

interface. Components range in complexity. Reducing

components to a single function, like a button or a drop

down increases flexibility, making them more reusable. More

complex components, like tables for specific types of data,

can serve their use cases well, but this complexity limits the

number of applicable scenarios. The more reusable your

components are, the less you need to maintain, and the easier

scale becomes.

Learn more about building components in "Chapter 3: Building

your design system."

11

“Having technical knowledge of the Macintosh
user interface is a key factor in product design,
but understanding the theories behind the
user interface can help you create an excellent
product.”

Macintosh HIG — APPLE

Component-based development reduces technical overhead

by making code reusable. Standards govern the purpose, style,

and usage of these components. Together, you equip your

INTRODUCING DESIGN SYSTEMS

product team with a system that is easy to use, and you give

them an understanding that clearly links the what with the why.

PRO TIP — Transcend platforms

Your visual language can transcend platforms to create

continuity across web, iOS, Android, and email. Document and

display your visual language in a prominent place within your

design system’s site. This will help inform system contributors

about how components should look and behave.

For instance, Google’s Material Design dives deep into every

aspect of their visual language: Check out their page on color.

The value of design systems
Let’s take a detailed look at the many ways a design system

can be a much-needed painkiller for your growing pains.

Scale design

https://dbtr.co/HIGuidelines

13

As teams grow, it’s common for designers to concentrate on

discrete areas of an app like search and discovery, account

management, and more. This can lead to a fragmented visual

language—like a Tower of Babel of design—with each designer

speaking her own language. This happens when designers

solve problems individually and not systematically.

With no common design language to unite the product, the

user experience starts to break down, as does the design

process. Design critiques become unproductive when there’s

a dearth of design conventions. To create alignment within

teams, there must be a shared source of truth—a place to

reference official patterns and styles.

Most often this is a static artifact, such as a design mock,

but a static reference will almost immediately become

outdated. That’s why teams build monuments like Shopify’s

Polaris site—a design system site, built with the system,

that documents all aspects of the system including the

components, guidelines, and UX best practices. And because

it is built with the system, it will always be up-to-date.

An internal design systems site is the best, most accessible

source of truth for product teams. It provides the gravitational

pull to keep team members aligned and in sync.

INTRODUCING DESIGN SYSTEMS

Jesse Bennett-Chamberlain (Shopify)

Listen Online: Circumstances For Investing In Polaris

Manage your debt

As applications and their teams age, they build debt. Not

financial debt, but technical and design debt. Debt is acquired

by building for the short-term. Design debt is made up of

an overabundance of non-reusable and inconsistent styles

and conventions, and the interest is the impossible task of

maintaining them. Over time, the accumulation of this debt

becomes a great weight that slows growth.

The act of creation does not inherently create debt—just like

spending money doesn’t inherently create financial debt. But

using a design system will keep you on budget by keeping your

https://dbtr.co/shopify-investing

15

design and code overhead low, while still allowing you to grow

and evolve your application.

Design consistently

Standardized components used consistently and repetitively

create a more predictable and easy to understand application.

Standardized components also allow designers to spend less

time focused on style and more time developing a better user

experience.

Prototype faster

Working within an existing design system allows you to piece

together flows and interactions as quickly as pulling LEGO

blocks from a bin. This allows you to build an endless amount

of prototypes and variants for experimentation, helping your

team gain insights and data fast.

Iterate more quickly

INTRODUCING DESIGN SYSTEMS

Whether evolving the style of your UI or making UX changes

to a flow, using a design system reduces effort from hundreds

of lines of code to as little as a few characters. This makes

iterations quick and painless, and experimentation much

faster.

Improve usability

Inconsistent interface conventions hinder usability. When CSS

for countless unique interface elements and their interactions

increase, so does cognitive load and page weight. This makes

for a terrible user experience. It can also create conflicting

CSS and JavaScript, potentially breaking your app. By using a

design system, you’re able to avoid these conflicts by building

a holistic library of components, instead of per page, which

means you’ll spend less time in quality assurance.

Build in accessibility

Accessibility can be implemented at the component level by

optimizing for those with disabilities, on slow Internet speeds,

or on old computers. This is an easy usability win. In "Chapter

3, Building your design system," Katie Sylor-Miller explains how

17

design systems can help improve your product’s accessibility

and compliance with your country’s laws.

Myths of design systems
Even with all their benefits, buy-in for creating a design system

can still be a hard sell internally. Designers can feel limited

or restrained, but often these perceived weaknesses are the

greatest strengths of a design system.

Let’s debunk common myths you’ll hear as you sell the idea of

creating a design system.

Myth 1: too limiting

Myth: Designers embedded in discrete areas of an app see

qualities that may be different from other areas. Because of

this, a universal system is perceived as being too limiting and

might not serve the needs of these specific areas.

Reality: Designers often end up creating custom solutions

INTRODUCING DESIGN SYSTEMS

to improve discrete areas of the app, adding to design and

technical debt. With a design system, new solutions can be

created and fed back into the system.

Myth 2: loss of creativity

Myth: If designers are restricted to using a design system,

then designers will no longer be free to explore style. Front-

end backlogs are often full of design style updates. Evolving

the visual style of an app is typically no small task. This can

also be a great risk, as it removes resources from new feature

work and may negatively impact usability.

Reality: The components of a design system are

interdependent. This means when a change is made in one

location, the change will be inherited throughout the whole

system. This makes style updates within a system trivial in

effort but much greater in impact. What once was weeks—

if not months—of work, can now be accomplished in an

afternoon.

19

Myth 3: one and done

Myth: Once the design system is designed and built, the work

is complete.

Reality: A design system is living, meaning it will require

ongoing maintenance and improvements as needs arise.

Because your application is powered by the reusable

components of your system, however, the application

automatically inherits improvements to the system, lowering

the effort to maintain the application. This is the power of

scaling that a design system offers.

“A lot of the original vision was about the visual
identity…we started to understand that it had
to be a system with really strong interaction
design fundamentals as well."

Rich Fulcher — GOOGLE

https://dbtr.co/fulcher-material
https://dbtr.co/fulcher-material
https://dbtr.co/fulcher-material
https://dbtr.co/fulcher-material

INTRODUCING DESIGN SYSTEMS

Conclusion
Design systems are not a fad or even an untested hypothesis.

For design to find the scale necessary to match the rapid

growth of technology, component-based design and

development is a proven and dependable solution.

Now that you’ve seen the true value of creating a design

system, let’s dive into the actual design process in the next

chapter.

Further reading
Software Crisis

Component-based Software Engineering

The Way We Build

Designed for Growth

Selling a Design System before asking for buy-in

https://dbtr.co/software-crisis
https://dbtr.co/component-engineering
https://dbtr.co/airbnb-build
https://dbtr.co/etsy-growth
https://dbtr.co/selling-system

21

The Design of Everyday Things

What is a Design Language… really?

Things you could be doing instead of designing and building

that card component for the umpteenth time

Website Style Guide Resources

Making Material Design

Material Design

Shopify Polaris

Starting a Design System

https://dbtr.co/design-everyday
https://dbtr.co/what-is-design-language
https://dbtr.co/things-you-could
https://dbtr.co/things-you-could
https://dbtr.co/styleguides
https://dbtr.co/making-material
https://dbtr.co/material-guidelines
https://dbtr.co/shopify-polaris
https://dbtr.co/starting-system

INTRODUCING DESIGN SYSTEMS

23

INTRODUCING DESIGN SYSTEMS

Chapter — 02

Designing your
design system
Step by step
By Jina Anne

25

Starting a design system can feel daunting. There are so

many things to consider: the design style, how to design for

modularity and scalability, how it will be used by other teams,

how to sell the idea to the decision makers in the company.

Where is a designer to start?

Big problems are always more manageable when broken into

smaller pieces. Before diving into the design process, start

by considering who needs to be involved in the creation of

your design system and how the team will work together.

Once you’ve got the right people assembled, you’re ready to

start thinking about the design language of the system, which

will include color, typography, spacing, and more. Your visual

design language will be the foundation of your UI library—a

series of components that can be assembled to create an

interface quickly.

Let’s take a step-by-step look at how you can start designing

your design system.

INTRODUCING DESIGN SYSTEMS

Who should be involved
Before beginning work on your design system, take a moment

to think about the team you’ll need to bring it to life. Who needs

to be involved? Spoiler alert! You’re going to need more than

just designers.

“We have this program called the guild…
essentially we take one person from each
pillar…and for our design system we use them
as our user research group."

Rachel cohen — LINKEDIN

Here’s a quick list of the disciplines that can be represented in

your team to create an effective design system:

•	 Designers to define the visual elements of the system

•	 Front-end developers to create modular, efficient code

https://dbtr.co/linkedin-system
https://dbtr.co/linkedin-system
https://dbtr.co/linkedin-system
https://dbtr.co/linkedin-system

27

•	 Accessibility experts to ensure your system conforms to

standards like WCAG

•	 Content strategists who can help the team nail the voice

and tone of the system

•	 Researchers who can help you understand customer

needs

•	 Performance experts who can ensure your system loads

quickly on all devices

•	 Product managers to ensure the system is aligning to

customer needs

•	 Leaders (VPs and directors) to champion and align the

vision throughout the company including up to executive

leadership

Once you’ve got the right skillsets represented in the design

systems team, identify strong leaders to represent each area

who can drive decisions forward. Know who on the team can

advocate for the areas of the design system.

https://dbtr.co/WCAG

DESIGNING YOUR DESIGN SYSTEM

With a team of experts guided by strong leadership, your next

task is to establish the right team model to help you achieve

your goals.

Choosing the right team model

The team model that brings people together is as important

as the team creating your design system. In “Team Models

for Scaling a Design System," design systems veteran Nathan

Curtis outlines three popular team models used in many

companies.

The solitary model: an “overlord” rules the design system.

https://dbtr.co/team-models
https://dbtr.co/team-models

29

Figure 1: The solitary design system team model—one person rules it

all. Image by Nathan Curtis, reused with permission.

The centralized team model: A single team maintains the

design system as their full time job.

Figure 2: The centralized design system team model—one team rules

the system. Image by Nathan Curtis, reused with permission.

The federated model: team members from across the

company come together to work on the system.

DESIGNING YOUR DESIGN SYSTEM

Figure 3: The federated design system team model—people from

various teams assemble to manage and govern the system. Image by

Nathan Curtis, reused with permission.

There are strengths and weaknesses in each of the above

models. A solitary model is fast and scrappy, but with one

person in charge of so much the “overlord” can become a

bottleneck to the completion of many tasks. . A centralized

team keeps the system well maintained, but they may not be

as connected to the customers’ needs as they may be less

involved in user research. And a federated team has great

insight into what is needed for all the product features and user

needs, but can be quite busy working on those areas already.

31

Many teams are moving away from the solitary model to the

centralized or federated model because, as Nathan mentions

in his article, overlords don’t scale. The centralized or

federated models are usually much better for scaling a design

system.

I wrote about the The Salesforce Team Model in response to

Nathan’s article. When I was at Salesforce on the Lightning

Design System team, we used a combination of the centralized

and federated models. In an enterprise organization as big

as Salesforce, a centralized design systems team was not

enough on its own. With so many key players involved and

the large amount of ground we had to cover across products

and platforms, we needed an approach that would be more

sustainable.

https://dbtr.co/salesforce-team-model
https://dbtr.co/salesforce-lightning
https://dbtr.co/salesforce-lightning

DESIGNING YOUR DESIGN SYSTEM

Figure 4: A hybrid design system team model that we used at

Salesforce—a central team and members of other teams come

together to manage and govern the system.

Though the Lightning Design System has a core team, there

are also core contributors from many of the product and

feature areas in the Salesforce ecosystem that act as a

federation of practitioners who surface new ideas and make

requests for the design system to evolve. Researchers,

accessibility specialists, lead product designers, prototypers,

and UX engineers work with the central design system team to

both consume and help establish the patterns, components,

and the overall design system. Engineers refine all code to

33

make sure the system is performant and production ready.

Though the solitary model is less popular in most teams

because the primary contributor can become a bottleneck,

there are situations where it can work quite well. In the midst

of a political campaign moving at breakneck speeds, Mina

Markham had little time to bring in reinforcements as she

developed new online assets for Hillary Clinton. She created

a design system called Pantsuit to help many teams in many

locations expedite design and production while maintaining

consistency in the campaign brand. The solitary model let Mina

focus on speed first and longevity second, which is a different

tack than a typical enterprise might take.

Figure 5: Pantsuit, a design system created by Mina Markham for the

https://dbtr.co/mina-markham
https://dbtr.co/mina-markham
https://dbtr.co/pantsuit

DESIGNING YOUR DESIGN SYSTEM

2016 Hillary Clinton campaign.

As you determine what team model works for you, consider

your goals. If you want to move fast, the solitary method is

ideal initially, though some work may need to be done later

to fully adopt it across other teams. If you want to move fast,

but want to encourage buy-in from the start, consider the

centralized team model. And to get the most buy-in and shared

ownership, the federated model is a good option. In any case,

remember that a design system is a product so staff it like a

product instead of a project; you want people committed to

maintaining and evolving it.

With the team and the model that organizes them established,

it’s time to start your design system just as you would any new

product: by talking to your customers.

Interviewing customers

As with any product design process, it’s important to do your

research. Who will be using your design system and how will

they use it? Your design system will get used much more

often if you create it to fit into the workflow of other teams. By

https://dbtr.co/design-system-product

35

PRO TIP — Building empowering style guides with practical

research

Isaak Hayes and Donna Chan delivered
an interesting talk titled, “Building
Empowering Style Guides with Practical
Research (https://dbtr.co/empowering-
style-guides),” at Clarity Conference
(https://dbtr.co/clarity-conf). The talk
proposes a series of useful techniques
that can help you conduct research
effectively for your design system. After
the interviews, they use the data to
create design principles, metrics, and
user stories.

DESIGNING YOUR DESIGN SYSTEMS

DESIGNING YOUR DESIGN SYSTEM

interviewing users, you can pinpoint problems ahead of time,

define principles that will help others use the system properly,

and focus your energies on the things that will be most

important.

A less common group of people to interview are members of

your open source community. This is likely in organizations

that provide developer tools for their customer and partner

communities. If you plan to open source your design

system—a potentially bigger project—then you’ll need to

speak with potential contributors and consumers to discover

what use cases your design system will need to satisfy.

And then there are the executives, leaders, and management.

It is important to get their thoughts as well. You will need

their buy-in to support and fund the system. Listen to their

concerns and use them as actionable goals and metrics to

achieve. Examples of requests might be faster shipping of

features, better performance, and improved UI quality.

With insights in hand from customer interviews, it’s time to

take an inventory. There are two types of interface inventories

to be created:

37

•	 An inventory of the visual attributes (such as spacing,

color, and typography), which will help us create a codified

visual language

•	 An inventory of each UI element (such as buttons, cards,

and modals), which will help us create a UI library of

components

Let’s first focus on a global visual inventory. We’ll get to the UI

element inventory later.

Creating a visual inventory
Of course, if you’re starting a design system for a product that

doesn’t yet exist you can skip this step and jump straight to

creating a visual language for your new product. Lucky you!

DESIGNING YOUR DESIGN SYSTEM

Conducting a Visual Audit

As we start to take inventory, it’s good practice to take a

look at the CSS used to create all of those elements you just

captured in your visual inventory. Use a tool like CSS Stats to

see how many rules, selectors, declarations, and properties

you have in your style sheets. More relevant, it will show you

how many unique colors, font sizes, and font families you have.

It also shows a bar chart for the number of spacing and sizing

values. This is a great way to see where you can merge or

remove values.

https://dbtr.co/CSSstats

39

Figure 6: Facebook’s 38 unique text colors found by CSS Stats.

If you’re creating an inventory in Sketch use the Sketch-

Style-Inventory plugin to aggregate all colors, text styles, and

symbols quickly. It also gives you the ability to merge similar

styles into one.

Creating a visual
design language

https://dbtr.co/sketch-style
https://dbtr.co/sketch-style

DESIGNING YOUR DESIGN SYSTEM

I must admit, as an art school graduate the visual design

language in a design system is my favorite part to work on. I

love thinking about color theory, typography, and layout, which

are at the core of any design system.

If we break apart each component of a design system we find

these fundamental elements that make up its visual design

language:

•	 Colors

•	 Typography (size, leading, typefaces, and so on)

•	 Spacing (margins, paddings, positioning coordinates,

border spacing)

•	 Images (icons, illustrations)

Depending on your needs, you may also include the following

to further standardize the user experience:

41

•	 Visual form (depth, elevation, shadows, rounded corners,

texture)

•	 Motion

•	 Sound

Consider the role each of these design elements plays in

a simple component like a button. A button typically has a

background color, typography for the label, and spacing inside

it. There may be an icon next to the label to create a visual cue.

A border on the edge serves as simple ornamentation and may

even round the corners. Finally, hovering over or clicking the

button could trigger animation or sound as feedback to the

user. Though a button may seem simple, there are many design

decisions required to bring it to life.

DESIGNING YOUR DESIGN SYSTEM

Figure 7: The many variations of buttons in the Buzzfeed Solid design

system: buttons applied to both button elements and links, in the

following modifiers: primary, secondary, transparent, negative, white,

disabled, with icons, social, small, small with icons, small social, as

well as a custom button that you can color to your needs.

Design tokens

Before we dive into visual design standards, I want to discuss

design tokens. Design tokens are the “subatomic” foundation

of a design system implementation. At its simplest, they are

43

name and value pairs stored as data to abstract the design

properties you want to manage. With the values for all design

tokens stored in one place, it’s easier to achieve consistency

while reducing the burden of managing your design system.

Example: SPACING_MEDIUM: 1rem.

In design tokens you can store colors, spacing, sizing,

animation durations, etc, and distribute them to various

platforms.

Figure 8: Example of border radius design tokens on the Lightning

Design System.

We’ll look more closely at design tokens in Chapter 3.

DESIGNING YOUR DESIGN SYSTEM

Color

The colors you choose for your design system are more than

just an extension of your brand. A UI uses color to convey:

•	 Feedback: Error and success states

•	 Information: Charts, graphs and wayfinding elements

•	 Hierarchy: Showing structured order through color and

typography

Common colors in a design system include 1-3 primaries

that represent your brand. If none of these work well as a link

and button color, then you may have an extra color for that

as well. It’s a good idea to use the same color for links and

button backgrounds as it makes it easier for users to recognize

interactive elements.

You’ll likely have neutrals for general UI backgrounds and

borders—usually greys. And finally, you’ll have colors that

are for states such as error, warning, and success. Group

these colors to see how well they work together and refine as

needed.

45

Figure 9: Color palette with design tokens in the Carbon design

system.

PRO TIP

The in-progress book, Programming Design Systems by Rune

Madsen, has some great chapters on color available online to

http://Programming Design Systems

DESIGNING YOUR DESIGN SYSTEM

PRO TIP — Checking color contrast

There are a variety of color contrast
checkers (https://dbtr.co/color-contrast)
you can use to ensure your color palette
works for everyone who will use your
products. Be sure to check contrast
ratios for background and text color
pairings.

DESIGNING YOUR DESIGN SYSTEMS

47

read, including “A short history of color theory”.

Larger design systems sometimes include colors for objects

and products. For example, at Salesforce we had a color for

contacts, for sales deals, or groups, and so on. We also had

them for products: Sales Cloud, Marketing Cloud, Analytics

Cloud, etc. Color can be a helpful wayfinding tool for your

users.

Figure 10. Colors used for objects in Salesforce.

https://dbtr.co/color-theory

DESIGNING YOUR DESIGN SYSTEM

Using color for wayfinding can be tricky to do while maintaining

accessibility, as people who are color blind may not be able to

discern some differences.

Depending on how strict you want to be with your palette,

you may want to include a range of tints—a color mixed with

white—and shades—a color mixed with black. Sometimes

you may use other colors instead of white or black to avoid

muddiness, such as an orange to darken a yellow so it doesn’t

appear brown.

These color variations allow designers to have choices. But

be warned, having too many choices can lead to major design

inconsistencies. Keep your inclusion of tints, shades, and

neutral palettes slim to prevent misuse of the system while still

giving designers the flexibility they need. You can always add

more colors as you find the need.

49

Figure 11: The Pivotal UI style guide chooses to give a wide range of

color tints and shades with their design tokens. While I personally

prefer to only give a leaner set of options (as seen in the Sass style

guide), some design systems prefer to offer more choices. Consider

which approach works for you as you balance concerns like creative

freedom versus tighter consistency.

Typography

DESIGNING YOUR DESIGN SYSTEM

Fonts and weights

The fonts you choose have a high impact on both your brand

and your user experience. Keep legibility in mind as you

select the right fonts for your system. Keeping to common

system fonts like Helvetica, Times New Roman, or Verdana

can be a great shortcut, as they are familiar to the user’s eye.

Some companies prefer custom web fonts to better reflect

their brand, but pay special attention to how you use them as

performance can be affected.

Most design systems I’ve worked on include just two

typefaces: one font for both headings and body copy, and a

monospace font for code. Sometimes there’s an additional

font for headings that compliments the body font. Most

design systems do not have a need for more, unless you have

a system that supports multiple brands. It’s best to keep the

number low as it’s not only a best practice of typographic

design, it also prevents performance issues caused by

excessive use of web fonts.

51DESIGNING YOUR DESIGN SYSTEMS

WEB CONTENT
ACCESSIBILITY GUIDELINES
(WCAG) 2.0
W3C

“Line spacing (leading) is at least space-
and-a-half within paragraphs, and
paragraph spacing is at least 1.5 times
larger than the line spacing.”

DESIGNING YOUR DESIGN SYSTEM

Figure 12. Google’s Roboto shown in varying weights.

These days it’s trendy to use a font at a very thin weight, but

be aware that legibility can become an issue. If you want to use

light or thin weights, only use them at larger text sizes.

53

Type scale

When selecting the size to set your type, consider the legibility

of the font you’ve chosen. In most cases, a 16px font size

works well. It’s the default font size in most browsers, and it’s

quite easy to read for most people. I like using 16px as it works

with the 4-based metrics used by Apple and Google (and is

gaining traction as the standard approach). I recommend this

as your baseline, though I would use it in a relative format like

1rem for CSS-based systems.

You can use a modular scale for larger or smaller font sizes

for other elements such as headings. A modular scale is a set

of numbers in which you have 1 base number, and a ratio to

generate the next number. You keep applying the ratio to the

new number to get yet another number.

PRO TIP — Understanding modular scale

Learn more about modular scales to create more meaningful

typography.

https://dbtr.co/meaningful-typography
https://dbtr.co/meaningful-typography

DESIGNING YOUR DESIGN SYSTEM

Figure 13: The Modular Scale tool helps you find one that works for

you. It even provides a Sass version of the tool, which you could add

to your design token set.

As you design your type treatments, be sure to give thought to

how it will respond to various screen sizes to maintain legibility.

You won’t want your headings to be too large for mobile

devices. And for much larger displays, you have the room to

bump up sizes.

A common method is to enlarge headings on larger viewports.

You can also use viewport units to scale your type based on a

55

percentage of your screen size.

Leading

Leading, or line-height in CSS, can improve readability and

aesthetics of your typography. While the best line-height

can vary depending on the font face and the line length, a

general rule of thumb is to have leading at around 1.4–1.5x the

font-size. 1.5 is recommended by the W3C Web Accessibility

Initiative.

It also makes your math more predictable, but you don’t have

to calculate it. You can define your line-height without a unit of

measurement and the browser will do all the hard math for you.

For headings, tighten it up depending on your typeface. In

most cases, I find a 1.25 or 1.125 ratio works quite well.

DESIGNING YOUR DESIGN SYSTEM

Figure 14: Tachyons also use 1.5 for body and 1.25 for headings.

Spacing and sizing

The system you use for spacing and sizing looks best when

you have rhythm and balance. This means using numbers

based on patterns and proportions. Using a consistent spacing

57

scale also promotes maintainability through ratios by making

layouts more predictable and more likely to “fit” and align well.

When I designed an Android app, I studied Google’s design

guidelines. I noticed a pattern of using 8dp between elements

and 16dp for outer gutters. It broke me out of using a 10-based

scale I was accustomed to, as I found that 4-based worked so

much better.

A 4-based scale is growing in popularity as the recommended

scale for many reasons. Both iOS and Android use and

recommend metrics that are divisible by or multiples of 4.

Standard ICO size formats, which are used by most operating

systems, for icons tended be 4-based (16, 24, 32, etc.) so that

they scaled more easily. The browser’s default font size is

usually 16. When everything is using this system, things are

more likely to fit in place and line up. And finally, responsive

math works out well.

https://dbtr.co/ICO-format

DESIGNING YOUR DESIGN SYSTEM

Figure 15: The Google Android design guidelines (before this site was

replaced by material design). Studying these guidelines made me a

better mobile designer.

For horizontal spacing, an 8-based scale works quite well.

You can make margins and padding equal or in proportion to

the font size. But for vertical spacing, I tend to use a 12-based

system. This is due to the line-height I get of 1.5 (with the

default font size of 16px) getting us to 24.

Occasionally, you may have to break this rule. If you’ve added

a 1px border to something, this border can throw off alignment

by a hair. So you might find yourself using a padding or margin

that subtracts that amount. This is something that you do on a

59

case-by-case basis.

You probably want elements to grow and shrink with the

content. For general sizing, avoid setting widths and heights

unless totally necessary. You can achieve responsive design

much easier if you let elements flow to fill the space they’re

given in the layout.

Images

File formats

For icons and illustrations, I find using a vector format (SVG)

works best for scalability and responsive design. However, if

you find yourself needing to use photography, you may need to

use a rasterized image format like JPG or PNG.

For most photos, illustrations, and diagrams, you can allow

the image to go 100% to the container or viewport and let the

height automatically set itself by not defining it. This works

best for responsive layouts. You may also want to define some

preset widths for images if you don’t want it to go full width (for

DESIGNING YOUR DESIGN SYSTEM

example, half-width, a third, or a fourth). I recommend setting

these as max-widths so that the image can rescale for smaller

screens.

Iconography

Before drawing your icons, come up with your guidelines

around them first. Will they be filled or outline? What is the line

weight? Will they use more than 1 color? What sizes will they

be? Is there an icon art boundary set inside an outer boundary?

You may have different styles for different icon types. For

example, utility and action icons (like a notifications bell or a

settings cog icon) may be solid and one color, while navigation

icons may be multicolored and more creative. Clear guidelines

will keep your icons unified.

61

Figure 16: Apple shows the different icon types in their ecosystem:

app icons, glyphs, and glyphs used on color.

Illustrations

Illustrations are a great way to add some character to your

DESIGNING YOUR DESIGN SYSTEM

product. You can use these for empty states, loading screens,

modals, and other components that invite visual interest.

Shopify went to great lengths to produce unique illustrations

for all of the empty states of their platform, which conveyed a

strong sense of brand personality.

Similar to icons, it’s helpful to have guidelines for the style of

your illustrations.

Figure 17. Illustration guidelines by Al Power.

https://dbtr.co/shopify-empty-states

63

Visual form

Visual form, or the material quality of your UI, is about the

background images, gradients, and textures, shadows and

elevation (z-indexes), rounded corners, and borders. These are

visual qualities that help emphasize and decorate elements

to add visual hierarchy and aesthetics. In any case, all are

examples of ornamentation that need to be standardized.

Google does a great job indicating how depth and elevation

work with layering of components.

DESIGNING YOUR DESIGN SYSTEM

Figure 18: An example of depth through elevation in Google’s material

65

design implemented through z-indexes and shadows.

Motion and sound

When you define your visual language, motion and sound might

not immediately come to mind. You experience these in a

different way. But motion and sound can have a high impact on

the experience of your app. You’ll want to have that systemized

as well for consistency. I personally haven’t explored these

areas as much as I’d like to admit, but there are some great

examples in the wild.

DESIGNING YOUR DESIGN SYSTEM

Figure 19. IBM’s animation guidelines draw upon their rich history of

products and technology.

67

Creating a user
interface library
Before we conducted a visual inventory, which looked at

the visual qualities of elements, such as color, spacing, and

typography. Now, we will conduct a UI inventory, in which

we look at the actual pieces of UI—like buttons, cards, lists,

forms, and more. Where visual language is all about the visual

approach and how things look on a global visual level, a user

interface library (otherwise known as a pattern library) looks at

actual components of a UI.

Let’s take a look at each of these design elements and the role

they’ll play in your design system. Take stock of all interface

elements in production to see just how much design debt you

need to address and what elements are most commonly used.

Warning! This can get a bit depressing, as most companies

have an intense amount of inconsistency in their UIs.

To create an interface inventory simply open all products in

production at your organization, screenshot all buttons, forms,

various type styles, images, and collect them in a slide deck or

on big posters where the whole team can see.

You can do this with cut out print-outs or through screenshots.

DESIGNING YOUR DESIGN SYSTEM

Gather the folks you’re involving (as mentioned earlier in this

chapter). Have them conduct this inventory with you, either

through a shared presentation or via a hands-on activity. The

idea is to gather the different components you’re using and

categorize and merge them.

Some like dividing the pieces into elements, components,

regions, utilities, and so on. Atomic Design is a great example

of this line of thinking, which is a great conceptual model.

But when it comes down to it, everything is pretty much a

component, so at the end of the day, you could label all as

such. But in general, what I see most design systems break

things down into are:

•	 elements (or basics, or atoms)—these are small, stand-

alone components like buttons and icons

•	 components (or molecules, or modules)—these are usually

an assembly of small components into a larger component

like a search form (which includes a form input, a button,

and potentially even a search icon)

•	 regions (or zones, or organisms)—these are an area of the

69

UI like a left-hand navigation

•	 layouts—how the pieces are laid out on the page (like a

header region, followed by a sidebar and main content

area, followed by a footer)

After you complete the inventory, you can merge and remove

what you don’t need (either in a spreadsheet or even directly

in a code refactor if you want more immediate change). Also,

document what the component is and when to use it. This will

become your UI library (or pattern library, or component library,

depending on what your organization chooses to call it.).

DESIGNING YOUR DESIGN SYSTEM

Figure 20: The US Government agency 18F has one of my favorite UI

libraries: the U.S. Web Design Standards.

Most design system documentation includes the component’s

name, description, example, and code. Others may show meta

data, release histories, examples, and more. What matters

most is that you show what’s necessary for your team to get

your work done.

71

Figure 21.The Rizzo component library by Lonely Planet.

Conclusion
Creating a design system not only helps your team produce

DESIGNING YOUR DESIGN SYSTEM

more consistent user experiences, it also builds bridges

between design and development. By creating a common

visual language codified through design tokens, and a set

of components and patterns cataloged in a UI library, you’ll

vastly improve designer/developer communication. You’ll also

have fine-tuned control of the UI in a way that is manageable,

scalable, and robust.

Further reading
Priyanka Godbole’s Design System article series

Nathan Curtis’s Design System article series

Marcin Treder’s Design System article series. Start here

Brad Frost on creating interface inventories

Building a large-scale design system: How we created a design

system for the U.S. government by 18F

https://dbtr.co/priyanka-prototypr
https://dbtr.co/nathan-curtis-medium
https://dbtr.co/mark-treder-design-system
https://dbtr.co/interface-inventory
https://dbtr.co/us-gov-design-system
https://dbtr.co/us-gov-design-system

73

Design Systems are for People by Jina Anne

https://dbtr.co/design-systems-people

DESIGNING YOUR DESIGN SYSTEM

75

BUILDING YOUR DESIGN SYSTEM

Chapter — 03

Building your
design system
A strong foundation
By Katie Sylor-Miller

77

Modern design systems are the result of many years of

evolution in the way we write front-end code. When I started

my career, most sites were built with single-use, inefficient,

fragile, and inconsistent front-end codebases. Through hard-

won experience and many years of collaboration and iteration,

front-end developers have established more sophisticated

practices for writing and organizing our code. Now, there is

an explosion of front-end frameworks and tooling to help you

write better, more maintainable HTML, CSS, and JavaScript.

This represents an exciting paradigm shift in front-end

development, but the number of choices available can be

overwhelming. A cursory glance at the table of contents

for "Cody Lindley’s Front End Developer Handbook 2017’s

section on tools" reveals a bewildering array of considerations.

I couldn’t possibly cover all of the technology choices

available—the factors that go into your decision-making will

be largely situational, and this is only a chapter!

Instead, I’ll save you the headache of attending the school of

hard knocks by walking you through what I’ve learned from

building and contributing to 3 different design systems. First,

I’ll cover the technology-agnostic foundational principles that

should guide the development of your design system. Then, I’ll

focus on some common pitfalls and how you can avoid falling

https://dbtr.co/front-end-handbook
https://dbtr.co/front-end-handbook

BUILDING YOUR DESIGN SYSTEM

prey to them. Throughout, I’ll introduce you to some of the

tools that will help you along the way, but remember this: Your

technical approach doesn’t matter as much as creating a

living, breathing system that’s flexible, maintainable, stable,

scalable, and successful in the long-term.

Foundations
Regardless of the technologies and tools behind them, a

successful design system follows these guiding principles:

•	 It’s consistent. The way components are built and

managed follows a predictable pattern.

•	 It’s self-contained. Your design system is treated as a

standalone dependency.

•	 It’s reusable. You’ve built components so they can be

79

reused in many contexts.

•	 It’s accessible. Applications built with your design system

are usable by as many people as possible, no matter how

they access the web.

•	 It’s robust. No matter the product or platform to which your

design system is applied, it should perform with grace and

minimal bugs.

Let’s take a look at each of these principles in more detail.

Consistency

Your first, most important task when starting out is to define

the rules of your system, document them, and ensure that

everyone follows them. When you have clearly documented

BUILDING YOUR DESIGN SYSTEM

code standards and best practices in place, designers and

developers from across your organization can easily use and,

more importantly, contribute to your design system.

Code style guides

Code style guides provide the grammar rules of syntax and

semantics for your code. Code syntax is the set of rules for

structuring and formatting your code (e.g. curly braces always

go on a new line). Code semantics provide the rules for making

your code understandable (e.g. alphabetize CSS property

declarations). But don’t get bogged down fighting pointless

wars over tabs versus spaces. The most important thing

is to end up with consistently written code, not to achieve

theoretical perfection!

Automating code style

To enforce your code standards and achieve consistency in

your system, help your contributors write code that follows the

rules through linting and tooling.

https://dbtr.co/tabs-vs-spaces
https://dbtr.co/tabs-vs-spaces

81BUILDING YOUR DESIGN SYSTEM

PRO TIP — Front-end guidelines questionnaire

Unsure where to start making decisions about your technical

approach? Brad Frost has written a handy Frontend Guidelines

Questionnaire to guide you.

https://dbtr.co/frontend-guidelines
https://dbtr.co/frontend-guidelines

BUILDING YOUR DESIGN SYSTEM 82

 PRO TIP — A starting point for code style

Start with an open source code style guide—I prefer Airbnb’s

“Mostly Reasonable” rules for CSS, JavaScript, and React—

then modify it to fit your needs. Be sure to include your team’s

code style rules in your design system’s documentation.

https://dbtr.co/airbnb-CSS
https://dbtr.co/airbnb-javascript
https://dbtr.co/airbnb-javascript

83

Linting is an automated process of analyzing code and raising

errors when code either doesn’t adhere to your syntax rules or

is broken, buggy, or malformed. Linting tools such as CSSLint

or StyleLint for CSS, and JSHint or ESLint for JavaScript, can

be run manually as part of your local development process, as

an automated pre-commit hook before code is checked into

source control (the best option), or run as part of your build

process.

PRO TIP — Automagically pretty

You can stop worrying about writing your JavaScript according

to code syntax rules entirely by using Prettier to automatically

reformat code without changing the underlying functionality.

Code editor configuration

An often-overlooked but important corollary to linting is

providing an Editor Config to enforce code style in your

https://dbtr.co/CSSlint
https://dbtr.co/stylelint
https://dbtr.co/JShint
https://dbtr.co/ESlint
https://dbtr.co/githooks

BUILDING YOUR DESIGN SYSTEM

editor(s) of choice. EditorConfig.org (figure 1) provides a cross-

platform format to define stylistic rules for most code editors

and IDEs, so you can automatically convert your tabs into

spaces—thus ending the tabs versus spaces war!

Figure 1. Example .editorconfig file from EditorConfig.org

Self-contained

https://dbtr.co/editorconfig

85

Your design system should live in a source control repository

independent from your main codebase. Although it will require

more work to get up and running, a separate repository brings

many long-term benefits:

•	 It enables versioned releases of your code (more on this

later)

•	 It allows you to share code across multiple teams,

products, and codebases

•	 It forces you to develop components in isolation so they’re

not tied to a single use case

•	 It provides infrastructure for a robust front-end testing

architecture

•	 It forms a foundation for a living style guide website

A standalone design system repository functions as a single

source of truth. There is only one place where components

are defined, which then gets shared into other codebases as

BUILDING YOUR DESIGN SYSTEM

a discrete dependency. Because all usages point back to a

canonical implementation, changes in a single place propagate

through the entire system.

Ideally, all of the code for each component within your

system is co-located: CSS, JavaScript, HTML templates,

and documentation all live in the same place, possibly the

same directory. If you’re using React with CSS-in-JS, each

component may even be encapsulated in a single file. The

closer the pieces are to each other, the easier it is to trace and

manage dependencies between bits of code, and the easier it

will be to update and maintain.

Reusable
Successful design systems are highly reusable. Bootstrap,

the most-used front-end library of all time, powers hundreds

(if not thousands) of websites because it was architected

with reusability in mind. Writing components to be reused in

https://dbtr.co/bootstrap

87

multiple contexts is vitally important, yet hard to do well—

make components too focused for a single use case or too

inflexible, and users will end up creating their own patterns.

To be reusable and scalable, patterns need to be modular,

composable, generic, and flexible.

•	 Modular components are self-contained with no

dependencies

•	 Composable components can be combined to create new

patterns

•	 Generic components can handle multiple use cases

•	 Flexible components can be tweaked and extended to

work in a variety of contexts

PRO TIP — Stay DRY

A fundamental best practice in software development is

BUILDING YOUR DESIGN SYSTEM

Don’t Repeat Yourself (DRY). When two different pieces of

code perform the same function, you double the possibility of

bugs, unintended side effects, and the amount of time spent

maintaining functionality. The goal of your design system is to

DRY up your development and reduce duplication by creating

reusable patterns.

Modular CSS architecture

Reusability and scalability in design systems begin with taking

a modular approach to your code architecture. CSS, however,

is not inherently modular. So over time, systems like SMACSS,

OOCSS, and BEM have added structure and modularity to

CSS. More recently, CSS-in-JS approaches such as Styled

Components have solved the problem by defining CSS

properties in JavaScript code structures.

Whether you use one of these systems or roll with your own,

the fundamentals of any good CSS architecture are the same:

•	 It has clear naming conventions for components,

variations, and utilities

https://dbtr.co/SMACSS
https://dbtr.co/OOCSS
https://dbtr.co/BEM
https://dbtr.co/styled-components
https://dbtr.co/styled-components

89

“The Web is fundamentally designed
to work for all people, whatever their
hardware, software, language, culture,
location, or physical or mental ability.
When the Web meets this goal, it is
accessible to people with a diverse
range of hearing, movement, sight, and
cognitive ability.”

WEB ACCESSIBILITY
INITIATIVE (WAI)
W3C

BUILDING YOUR DESIGN SYSTEMS

BUILDING YOUR DESIGN SYSTEM

•	 It’s tightly-scoped and has low-specificity CSS that limits

unintentional side effects

•	 It has utility classes that allow you to modify styles in a

managed way

•	 It has rules for building modular, composable, generic, and

flexible components

To learn more about architecting CSS so that it meets

these criteria, I highly recommend Harry Roberts’ https://

CSSguidelin.es/ then adding this type of documentation to

your system.

PRO TIP — Namespacing

Working with legacy code? Choose a unique, short, and simple

namespace to prefix your classes, e.g. .̀ds-[component

name]̀ . This will avoid class collisions when mixing multiple

libraries on a page, and ensure you know that your .̀ds-btǹ

class is different from the .̀btǹ class from Bootstrap.

https://dbtr.co/CSSguidelines)
https://dbtr.co/CSSguidelines)

91

Accessible
For too long, accessibility, or a11y, has been misunderstood

as building sites for a small group of users of assistive

technology—a blind person using a screen reader—and far

too often dismissed as too complex, too time-consuming,

or “not our customers.” Accessibility, however, is not just

for a single, small group, but for an estimated 15% of people

worldwide—56.7 million people in America alone—with a wide

spectrum of permanent or temporary visual, auditory, motor,

and cognitive impairments.

“[Accessibility testing] gives developers a
starting point to say ‘here are some errors that I
have tangible ways to go fix now.”

https://dbtr.co/a11y
https://dbtr.co/accessibility-stats
https://dbtr.co/sedlock-accessibility
https://dbtr.co/sedlock-accessibility
https://dbtr.co/sedlock-accessibility

BUILDING YOUR DESIGN SYSTEM

Alicia sedlock — FRONT-END ENGINEER & ACCESSIBILITY

ADVOCATE

Thankfully these attitudes are changing and our industry is

embracing a more inclusive definition of accessibility. Making

your site accessible to users with disabilities improves the

experience for everyone who visits your site. If that isn’t

enough motivation, improving your site’s accessibility can help

improve SEO, and it’s becoming increasingly more important

from a legal standpoint to avoid costly lawsuits.

In a landmark case against the grocery chain Winn-Dixie, a

federal judge ruled that websites are subject to the provisions

of the Americans with Disabilities Act (ADA). If you’re just

learning about accessibility, there are a lot of resources to help

you get started. I recommend reading the introductory articles

from the W3C’s Web Accessibility Initiative (WAI) WebAIM, and

the A11y Project. You can inspect the current state of your

site using Tota11y, an a11y visualizer bookmarklet by Khan

Academy. Starting an accessibility practice where none has

existed before can be challenging, but when you leverage your

design system, it’s easier than you might think.

https://dbtr.co/accessibility-SEO
https://dbtr.co/accessibility-SEO
https://dbtr.co/winn-dixie
https://dbtr.co/accessibility
https://dbtr.co/webAIM
https://dbtr.co/a11y-project
https://dbtr.co/tota11y

93

Enforce a11y with your design system

To ensure everyone at your organization builds accessible

sites, features, and apps, enforce accessibility best practices

in your design system code.

•	 Test your color usage against established color contrast

guidelines (figure 2).

•	 Build components to be keyboard and screen reader

accessible by default. The Ebay Accessibility MIND

pattern library is an amazing, thorough resource to help

guide development of accessible components and best

practices. Encourage contributors to build according to

these guidelines and test their code using keyboard-only

navigation and assistive technology devices like screen

readers.

•	 Include in your documentation code standards and

guidelines for common a11y best practices such as using

larger, legible text sizes, always associating a form field

with a label, and properly adding alt text attributes to

https://dbtr.co/contrast-grid
https://dbtr.co/contrast-grid
https://dbtr.co/MINDpatterns
https://dbtr.co/MINDpatterns

BUILDING YOUR DESIGN SYSTEM

images, to name a few. Salesforce’s Lightning design

system and Shopify’s Polaris are great examples of

accessibility guidelines in practice.

Jesse Bennett-Chamberlain, Shopify

Listen Online: Implementing And Rolling Out Polaris

These accessible practices improve usability for everyone

by making it easier to view, interact with, and navigate a site,

improving form completion rates and reducing user mistakes.

https://dbtr.co/lightning-accessibility
https://dbtr.co/lightning-accessibility
https://dbtr.co/polaris-accessibility
https://dbtr.co/shopify-implementing

95

Figure 2: Eight Shapes Contrast Grid allows you to test color

combinations for compliance with color contrast guidelines.

Use the power of your single source of truth to create a

foundation for accessibility, thus relieving some of the burdens

from product teams. It’s much easier to build in accessibility

from the start than to bolt it on after a feature has been

designed and built.

BUILDING YOUR DESIGN SYSTEM

Nate Whitson, LinkedIn

Listen Online: Accessibility

Robust
A robust design system has a strong foundation of tests

behind it. Testing provides confidence in your code, which

facilitates adoption. Users will know that they can upgrade

or change their UI without it breaking in unexpected ways.

Additionally, your design system is uniquely positioned to form

a foundation for robustly testing your front-end code.

“I like to think about it almost like…there’s an
implicit contract that this is always going to

https://dbtr.co/linkedin-accessibility
https://dbtr.co/sedlock-test
https://dbtr.co/sedlock-test

97

work."

Alicia sedlock — FRONT-END ENGINEER & ACCESSIBILITY

ADVOCATE

Test your design system instead of your
complicated UI

Keeping tests up to date for pages, applications, and

features—especially on a rapidly changing site or one with

heavy experimentation—requires a lot of work. Tests get out of

date quickly! You can narrow the scope of your tests and gain

higher levels of confidence in your site-wide front-end code by

heavily testing your design system components. You already

need to generate example code for the different states of each

component for your documentation—use those as your test

fixtures.

Types of tests

There are 4 types of tests used for ensuring stability in your

https://dbtr.co/sedlock-test

BUILDING YOUR DESIGN SYSTEM

design system:

•	 Unit testing: These tests verify that small units of

code (usually individual JavaScript functions) behave

as expected. Unit tests execute functions with a set

of predefined inputs, then verify that they return the

expected output. Some popular frameworks to use are

Mocha, Jasmine, and Jest.

•	 Functional testing: In functional tests, examples of your

code, or “fixtures” are run in a virtual “headless” browser,

then tested by performing simulated user actions, and

checking the new state of the browser for the expected

result of those actions. Functional testing frameworks

include Nightwatch, Protractor, and Casper.

•	 Visual regression testing: These tests help catch

unintended visual changes to component styles. The

test framework takes screenshots of your fixtures both

before and after the changes, then compares them using

an algorithm to detect visual differences. There are open

source frameworks like Wraith, Gemini, and BackstopJS,

as well as paid services like Applitools and Percy.io. Go

https://dbtr.co/mochaJS
https://dbtr.co/jasmine
https://dbtr.co/jest
https://dbtr.co/nightwatch
https://dbtr.co/protractor
https://dbtr.co/casperJS
https://dbtr.co/wraith
https://dbtr.co/gemini
https://dbtr.co/backstopJS
https://dbtr.co/applitools
https://dbtr.co/percy

99

to Kevin Lamping’s excellent resource Visual Regression

Testing for more information and options.

•	 Automated accessibility testing: Leverage tooling to

ensure that your components are accessible. Some

options for running automated a11y audits are Paypal’s

AATT and a11y by Addy Osmani, and aXe by Deque

Systems.

Jesse Bennett-Chamberlain, Shopify

Listen online: Challenges Implementing Polaris

Common challenges

https://dbtr.co/visual-regression
https://dbtr.co/visual-regression
https://dbtr.co/AATT
https://dbtr.co/a11y_addyosmani
https://dbtr.co/aXe
https://dbtr.co/shopify-challenges

BUILDING YOUR DESIGN SYSTEM

No system is ever perfect. You will make decisions that you

later regret, no matter how much time you put into designing

your design system. You can, however, anticipate issues that

arise as your system grows, and work to avoid or mitigate their

effect on your project. There are 3 common challenges I’ve

seen arise in multiple design systems:

•	 Keeping documentation up-to-date with your system code

•	 Handling breaking changes

•	 Avoiding performance degradations

•	 Let’s look at each of these concerns in detail.

Maintaining documentation
The first time I built a front-end component library, my team

decided it would be easier to create a documentation website

101

with a codebase separate from our application. In hindsight,

this decision broke the cardinal rule of Don’t Repeat Yourself.

Whenever a component changed in our main codebase, we

had to remember to actually update the documentation, then

do the tedious work of duplicating the changed code in 2

different codebases. Unsurprisingly, our documentation got

out of date almost immediately!

Learn from our mistakes by reducing the distance between

your documentation and code and using automation.

Minimize separation between library code and
documentation code

Earlier in the chapter, we discussed storing your design

system code in a separate repository that functions as your

single source of truth. When documentation and code are

co-located, it’s more likely that you’ll remember to update the

documentation when a component changes. Consider adding

a pre-commit hook to your design system repository to warn

contributors when their code adjustments don’t also contain

updated documentation files.

BUILDING YOUR DESIGN SYSTEM

Figure 3. IBM’s Carbon design system co-locates each component’s

CSS, JavaScript, documentation, and example HTML, which

functions as both documentation examples and test fixtures.

Automate documentation

Start by documenting your system using simple, human-

readable files written in markdown, co-located with each

component. Github is already configured to render and display

any file named README.md when you’re viewing a folder’s

contents—you might not need a flashy website at all!

https://dbtr.co/markdown

103

If and when you do decide to create a full-featured

documentation website, use automation to simplify the

process. Instead of creating a new codebase for a separate

website, use a tool that will auto-generate documentation for

you—there are lots to choose from—reducing the amount of

structural HTML you need to write and maintain.

PRO TIP — Cupper

Heydon Pickering of the Paciello Group has open-sourced

Cupper, a documentation builder that creates fully accessible

documentation. It’s a progressive web application (PWA)

under the hood, so you can save and view content offline on

supported devices.

https://dbtr.co/styleguide-generators
https://dbtr.co/heydon-pickering
https://dbtr.co/cupper

BUILDING YOUR DESIGN SYSTEM 104

PRO TIP — Reducing Your CSS Payload

Consider running automated process
to help reduce your CSS payload, then
use that information to decide which
components belong in your core file.
UnCSS (https://dbtr.co/unCSS) removes
unused selectors from your CSS and
outputs a new, reduced file. Another
approach is to automatically determine
the CSS necessary to render critical,
above the fold content, and embed that
in the head of your page to improve
render speed. Addy Osmani has
compiled a helpful list of Critical path
CSS tools (https://dbtr.co/critical-CSS).

105

Figure 4: The Cupper pattern library builder generates fully

accessible documentation websites (formerly called Infusion Pattern

Library Builder).

Handling change
As adoption grows and your design system becomes more

widely used, you will invariably realize that you didn’t get it all

right the first time, and you will need a plan to handle breaking

BUILDING YOUR DESIGN SYSTEM

changes. A breaking change is a situation where necessary

changes to a component’s code will break existing usages

of that component or class. The Morningstar design system

provides guidance to contributors on what is considered a

breaking change. If mishandled, breaking changes can be a

major pain point for your users.

The wrong way: duplication

Initially, all of the CSS and JavaScript for Etsy’s Web Toolkit

lived in the same monorepo with the rest of the team’s site

code. This meant that whenever someone made a breaking

change to a component, their commit making the change

had to also contain fixes and updates for every single usage

of that component. At first, when just a small team built and

used the system on a subset of pages, finding and making

these changes was relatively easy. But as adoption spread

throughout the company, this quickly became unmanageable.

It became such a headache to make major structural changes

to existing components that our team at Etsy started to

duplicate and deprecate—when we refactored our Tab

component to make it fully accessible, we created a new

https://dbtr.co/versioning
https://dbtr.co/versioning

107

component named “Tabs2,” and deprecated “Tabs” in the

hopes that teams would take on the work to upgrade their

code. But without clear guidance on how, why, and a timeline

stating when to upgrade, most uses haven’t been updated

to use the new component. This kind of duplication is a code

maintenance nightmare.

The right way: versioning

Breaking changes are easier to manage if you store your

design system code in its own source control repository. This

gives you the ability to do versioned releases of your code,

which can be shared with other projects. Git allows you to tag a

commit with a release version number, and package managers

like npm and Yarn allow you to package up and publish multiple

versions of your design system code.

https://dbtr.co/git
https://dbtr.co/npm
https://dbtr.co/yarn

BUILDING YOUR DESIGN SYSTEM

Figure 5.Example package.json, the package definition file format for

npm.

With versioned releases, the adopters that integrate your

design system code can target a specific version as a

dependency and control when and how upgrades to new

versions are handled. Make sure to publish release notes

detailing changes so other teams can learn how upgrades will

impact their codebase and better plan for upgrade work in

their project timelines.

PRO TIP — Using semver

Many versioned projects use semver, short for semantic

versioning, to distinguish between types of releases. Semver

https://dbtr.co/semver

109

uses 3 integers separated by dots to indicate major.minor.

patch versions, for example, v1.2.3.

•	 Major versions (1.0.0) contain breaking changes from prior

versions

•	 Minor versions (0.1.0) add new functionality that is

backward compatible

•	 Patches (0.0.1) contain bugfixes for existing functionality

and are backward compatible

•	 Semver adds another layer of confidence that certain

upgrades should be seamless to users, while others may

require regression testing or code changes.

Avoiding performance issues

BUILDING YOUR DESIGN SYSTEM

As a design system grows over time, generally so does the

file size of assets sent over the wire on each page. This can

negatively affect your site’s page load performance, which

in turn negatively affects your company’s bottom line. Help

the products built on your design system avoid performance

issues by taking a mobile-first approach and build your system

with modularity in mind.

Mobile first

Poor page load performance will have the largest negative

effect on mobile visits. According to statistics from Google

and Akamai, more than half of mobile visitors will abandon

pages that take longer than 3 seconds to load, yet the majority

of mobile sites take longer than 10 seconds to load. As

https://dbtr.co/mobile-speed
https://dbtr.co/akamai-performance

111

mobile traffic overtakes desktop, speeding up your page’s

performance is more important than ever to give you a

competitive edge.

Build your design system mobile-first—test early and often on

real devices with real hardware and a real network connection

so you can understand the experiences of real users.

https://dbtr.co/zurb-mobile-first

BUILDING YOUR DESIGN SYSTEM

Figure 6: WebPageTest performance results for Etsy.com on an

iPhone 6 over LTE network.

Leverage modularity

Initially, it made sense to bundle all of the Etsy Web Toolkit

components and utilities into single files for CSS and

JavaScript. While this is useful for prototyping, it adds

unnecessary weight to production pages that don’t use all

the components. Now, we’re working to avoid performance

problems by better using the modularity inherent in the

system. To do this, we are:

•	 Deciding on a set of core components and utilities that are

most frequently used. This base file will be included on all

pages that use the design system and can be cached by

the browser across page requests to improve load times.

•	 Ensuring that all components are fully modular with no

cross-component dependencies (unless they are explicit

and managed by the system).

Packaging and sharing the system’s code so that it can be

consumed as individual CSS and JavaScript modules added

113

as dependencies only when a component is actually used on

the page. We use an in-house system to define dependencies

in our front-end code. Build your design system modules so

they work with the dependency manager that your team uses.

Webpack is a popular option.

Forward-thinking

Design tokens

For most of this chapter, I’ve focused on building design

systems for web applications and sites. However, that’s not

the full picture. Modern organizations face unique challenges

with their design systems at scale. Today, we build for multiple

web and native platforms that need design consistency. Larger

organizations may have multiple sub-brands that want the

shared support, functionality, and organization that a design

system brings, but each needs a different, brand-aligned look

and feel. The Salesforce UX team introduced a solution to both

https://dbtr.co/webpack

BUILDING YOUR DESIGN SYSTEM

of these problems: design tokens.

Cross-platform sharing

Design tokens are a way to abstract design details like colors,

fonts, rounded corner radius, etc., into a format that can be

shared across platforms using Salesforce’s Theo tool. Instead

of defining your main brand color as a SASS $variable in your

web app, a UIColor in your iOS app, and a textColor in your

Android app, you define a single design token in a shared JSON

file that gets compiled into platform-specific code. Decide to

change all of your rounded corners from a 3px to 5px border-

radius? Change the value once in your tokens file, and it

propagates to all of your apps automagically

.

https://dbtr.co/salesforceUX
https://dbtr.co/salesforceUX

115

Figure 7: How design decisions are propagated via tokens in design

systems.

Multi-product theming

You can also use tokens to “theme” the same structural styling

for multiple brands. One brand wants orange buttons and the

other wants blue? No problem! You can define different token

values for each brand, then combine each to the same, base

CSS to output themed versions of your design system. That

BUILDING YOUR DESIGN SYSTEM

way, all of the classes are the same, and all of the accessible

JavaScript functionality you worked so hard to build can be

used as-is with no modification for each brand.

Conclusion
Systematizing your front-end code benefits everyone in your

organization: developers move faster, designers don’t have

to reinvent the wheel, and ultimately, your users have a better

experience. But starting out can feel overwhelming!

Thankfully, there is a wealth of resources and a growing

community of folks sharing their own best practices to

help you build your system. Anna Debenham’s "Styleguide

Resources" lists nearly 500 public design systems/style

guides/pattern libraries to use as inspiration. While they look

and feel very different, each shares a common goal and is built

upon foundational principles that our industry has developed

through many years of trial-and-error.

117

A flexible, maintainable, stable, scalable, and successful

design system begins with a strong foundation that goes

beyond frameworks or tooling. If I’ve learned anything in my

career, it’s that the only constant in front-end development

is change. Chances are, within a few years, the technology

driving your front-end will look very different than it does right

now. If you build for the long-term and plan to handle change,

then you can implement new, better practices as your system

grows.

That’s not to say you should aim to create another Bootstrap

right out of the gate. Even if your team can only implement

a few of the best practices we’ve discussed in this chapter,

it’s still worthwhile—some of the techniques I recommend

haven’t yet been implemented in the design system that I work

on every day! Design systems are not a one-and-done thing,

but a continual process of iteration and change as we make

mistakes, learn from each other, and create new and better

approaches to front-end code.

BUILDING YOUR DESIGN SYSTEM

Further reading
Website Styleguide Resources

Styleguide Driven Development

Styleguide Best Practices

CSS Architecture for Design Systems

Front-end Architecture for Design Systems (book)

Accessibility for Everyone (book)

Web Accessibility Resources

Front-end Performance Checklist

Designing for Performance

Rebuilding Slack.com

Tokens in Design Systems

https://dbtr.co/salesforce-theo
https://dbtr.co/styleguide-dev
https://dbtr.co/styleguide-practices
https://dbtr.co/CSS-architecture
https://dbtr.co/frontend-architecture
https://dbtr.co/accessibility-everyone
https://dbtr.co/accessibility-resources
https://dbtr.co/frontend-checklist
https://dbtr.co/designing-performance
https://dbtr.co/rebuilding-slack
https://dbtr.co/tokens

119

BUILDING YOUR DESIGN SYSTEM

121

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Chapter — 04

Putting your
design system
into practice
Better together
By Diane Mounter

123

How you develop your design system will influence how

you share and encourage adoption of the system. Broadly

speaking, there are 2 general approaches to developing and

rolling out a new design system: incremental and large-scale

redesigns.

In this chapter, we’ll walk through the 2 approaches, highlight

the pros and cons of each, and discuss adoption strategies.

Large-scale redesign
When a team takes this approach, it often means they

spend more time designing the system before rolling it out

everywhere, including doing a visual refresh or consolidation

of components. This allows the team to develop a fuller

system—from the primitive layer of colors and typography to

components, page layouts, and interaction flows.

Some teams approach their new system by creating imaginary

products to help them step away from the constraints of

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

working within a real application. Other teams design their new

system alongside the redesign of a real product or feature.

Testing with pilot projects

At Etsy, I worked with a team of designers and engineers on

the redesign of seller tools. This project provided a great

opportunity to test a new approach to our CSS and refresh our

visual styles. We built a new style guide alongside the seller

tools redesign that documented implementation and design

guidelines.

This became a pilot project for testing the new design

system. Rebuilding a real part of the product gave us a great

playground for testing new components, responsive layouts,

and new typography styles.

"In From Design Systems: Pilots & Scorecards," Dan Mall writes

about the criteria he uses to find good candidates for design

systems pilot projects. Though our approach at Etsy was more

opportunistic, many of the attributes Mall lists happened to

match the seller tools project:

01.	 Potential for common components. Does this pilot have

https://dbtr.co/etsy-tools
https://dbtr.co/pilots-scorecards

125

many components that can be reused in other products?

02.	 Potential for common patterns. Does this pilot have many

patterns that can be reused in other products?

03.	High-value elements. Even if uncommon, is there a

component or pattern with high business value at the

heart of this project? We’re talking about elements that are

integral to a flow or audience with unusually high value for

the organization.

04.	 Technical feasibility. How simple is a technical

implementation of the design system? Is a large refactor

required?

05.	 Available champion. Will someone working on this product

see it through and celebrate/evangelize using the design

system (and even contribute to it)?

06.	Scope. Is this work accomplishable in our pilot timeframe

of [3–4 weeks] (insert your timing here)?

07.	 Technical independence. Is the work decoupled enough

from other legacy design and code that there are clear

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

126

“We don’t really have one team doing all
the work…pretty much every designer
and engineer in our organization is a
part of the system.”
https://dbtr.co/twitter-horizon

TINA KOYAMA
TWITTER

127

start and end points?

08.	Marketing potential. Will this work excite others to use the

design system?

There was one downside to building the new design system

alongside a product—it ended up being biased to the needs

of that product. Afterward, it needed further development

to work for the whole Etsy application. Working in a silo with

minimal outside feedback allowed us to make progress quickly,

but meant that we had to work harder to encourage other

teams to adopt the design system.

Showing value through a sandbox environment

While working on the new Etsy style guide, we set up a simple

sandbox environment that allowed us to quickly prototype

HTML/CSS mockups. As we prepared to share the new style

guide with other designers, we realized the sandbox could be

helpful with adoption.

One of our goals was to reduce the time designers and

developers had to spend writing CSS, so they could spend

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

more time iterating on designs. The new approach we took

with CSS, combined with the sandbox environment, made

prototyping designs in the browser fast and easy.

The best way for people to see value is to experience it.

We set everyone up with sandboxes for training. This approach

empowered people to prototype and experiment with the style

guide using the sandbox, revealing value through hands-on

use.

To set people up for success, we wrote tutorials teaching them

how to apply different styles—such as atomic vs. component

classes, build mobile-first responsive layouts, and create

complex views such as a search results page—without writing

CSS. To help people understand the why behind our decisions,

we included a presentation on our design principles with

example scenarios, code samples, and live coding demos.

The sandbox’s CSS environment mirrored production, so

a designer’s prototypes easily translated to a developer’s

production work, avoiding costly and unnecessary new CSS.

Since code prototypes are written in the same language, they

gave developers a better sense of the intent than a static

mockup. Developers didn’t have to translate like they do with

comps from design tools. This further helped with adoption. A

129

design system that both designers and developers love has a

greater chance of success.

Documentation is key

Another key to adoption is up-to-date documentation. As

design systems peers say, “If it’s not documented, it doesn’t

exist.”

When styles go undocumented you run the risk of people

writing new but duplicate code. Documentation becomes more

important when introducing a new design system because

old patterns can outweigh new ones. Documentation helps

promote those new patterns, reduce the need to write new

code, and makes implementation easy with code examples and

guidelines.

Outdated documentation can cause damage too since it can

lead people down the wrong path and cause frustration. It’s

worth investing time in developing practices that help you

keep updated documentation.

Find opportunities to check documentation accuracy—such

as before and after an onboarding session, or as you add new

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

styles. Writing docs on the fly helps you test your code and

avoid building documentation debt. If you can, add tests that

check documentation when patterns are added and updated,

and try to make it easy for people to report inaccuracies.

PRO TIP — Documenting styles

Document styles as you add them. It’s easier to do when you’re

writing the code while it’s fresh in your mind than waiting to do

it later.

At Etsy, some engineering teams created onboarding projects

for new engineers. This usually involved building a small

feature from the backlog that would help them get familiar with

the engineering stack. I was stoked to see them implementing

UI layouts without help from designers, just by following style

guide documentation.

131

Post-rollout follow-up

Design systems are never done. The launch of your new

system should be thought of as version 1.0, with many

iterations will follow.

Whether you form a full-time team to evolve and maintain

your system or not, you likely have a few groups of people

interacting with it—makers of the system, users of the system,

and users who also contribute to the system. Whatever form

your team takes, makers need to stay in touch with the needs

of users and the organization.

A few months after rolling out the new design system at Etsy,

we ran working sessions with staff from a cross-section of

teams. Our goal was to learn how to improve the experience for

people using and contributing to the system, how successful

we’d been with promoting the system, and where it was

lacking. We took a qualitative research approach so that we

could be open to discovering things we didn’t realize were

problems—this meant a lot of face-to-face discussions with

light agenda’s to stimulate conversation.

Contributors

131

https://dbtr.co/qual-research

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE 132

"Clients, colleagues, and stakeholders
should embrace the pliable nature of
the digital world to create living design
systems that adapt to the ever-shifting
nature of the medium, user needs, and
the needs of the business."
(https://dbtr.co/frost).

BRAD FROST
AUTHOR, ATOMIC DESIGN

133PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

PRO TIP — In-person feedback

Make time for in-person feedback
sessions with internal stakeholders, it
will expose you to insights that might
otherwise never be uncovered.

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

We ran a user-journey mapping workshop with first-time

contributors to understand their experience. We suspected

people had mixed experiences—some seemed to struggle or

give up on their contribution entirely, and some had taken a

really long time to add their new pattern.

Findings: We discovered how deflating the experience could

be even when the contribution was successful. This led us

to develop a more collaborative pairing approach and take

an encouraging mindset toward code review for first-time

contributors.

Engineering early adopters

We met with early adopters on product teams with a particular

focus on understanding the engineering perspective. Most

engineers hadn’t taken part in training sessions and had

learned to use the new design system by reading the style

guide.

Findings: We learned a lot about out holes in our

documentation. For example, tutorials didn’t lend themselves

well to engineers, utilities were useful but buried, and people

134

135

felt concerned about how to use styles safely in experiments.

This led us to reorganize and elevate important information

up-front, improve search and navigation, add tutorials that

appealed more to engineers, and provide more clarity on style

usage.

Product managers

We ran a session with product managers to walk through the

new system and discuss the impact of refactoring and building

responsive layouts as part of feature development. Building

a design system that was responsive by default was a core

goal—and new for many parts of the Etsy web application.

Findings: We learned that most product managers trusted

their engineering managers to guide them with impact on

scope—this confirmed communication with engineers was a

priority. PMs understood there might be extra work initially,

but moving to the new design system would make front-end

implementation easier in the future. We showed them they

could scope work and make progress iteratively.

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Collaboration creates investment in adoption

It might not be logistically possible to involve your entire

company in design systems decisions, but some level of

collaboration is worthwhile.

Before Etsy formed a dedicated design systems team, a

working group made of a cross-section of designers drove

the evolution of the system. This group met regularly to

plan and prioritize projects, share work, and get feedback.

Group members collaborated with engineers and specialists

where needed, in situations like running experiments on high

converting pages and measuring performance.

These collaborations spread adoption even further and

resulted in design system champions across the company.

People who spent time contributing to the system were

invested in it and promoted it to others. Working in a silo had

helped us for the short term, but extending contributions to

outside the team set us up for success in the long term.

136

137

Nate Whitson, LinkedIn

Listen Online: The Origin Story of Art Deco

Incremental rollout
Not all design systems teams are able to take the time to

develop a fully-fledged system before rolling it out. Many

teams have to roll out parts of a design system at a time.

On the plus side, with an incremental rollout, teams can adopt

new parts of the system as they become available, which can

feel less daunting and disruptive. However, teams will also

need to give more thought to communication and promotion

of the system. Without a launch, there isn’t a big moment to

get everyone’s attention. Instead, you need to find and create

occasions to introduce people to your design system.

https://dbtr.co/linkedin-art-deco

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

When I joined GitHub and began exploring how the small, then-

part-time team might turn Primer into a more robust design

system, I knew we weren’t able to go away for a long period of

time and develop a complete system. There was a ton of work

in flight, and no planned re-design or siloed feature we could

use as a pilot project.

We needed to figure out the biggest pain points, reduce

them to their smallest part, and roll out Primer updates

incrementally.

Solve problems and win early adopters

One of the biggest pain points at GitHub was the amount of

time people were spending writing CSS, particularly for things

that should have been systematized, such as spacing and

typography styles.

Our solution ended up being the introduction of utilities (single

purpose classes, often referred to as atomic or functional

classes) based on system variables. We weren’t able to

start with auditing components and page layouts—we had

to start small and test the foundation of the system before

extending to larger parts. Adding utilities enabled us to make

138

https://dbtr.co/primer

139

styles available without refactoring tons of UI. Designers

and developers could start to use the primitive styles of the

system as soon as we rolled them out.

Once people discovered they could use utilities instead of

write new CSS, Primer started to catch speed. It solved a real

problem while allowing us to test the primitive layers of the

system. From there, we could start to replace and update the

component layer of styles.

Improve documentation and findability

Like at Etsy, documentation was key to adoption at GitHub.

Tons of widely used patterns in the GitHub codebase weren’t in

Primer and thus weren’t documented.

We sorted through piles of custom CSS and created a

directory in the GitHub codebase that formed a “waiting room”

for patterns that should be moved into Primer. We focused a lot

of effort on getting as much as possible documented, whether

it was in Primer or not. We also focused on adding more layers

of documentation, including describing our class naming

conventions, accessibility principles, recommendations for

tooling to work with our system, how to run linters, and an

overview of our style organization and packages.

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Just having styles documented wasn’t enough, though. We

needed to prioritize the style guide navigation and search for

findability.

Figure 1.GitHub’s Primer, components and behaviors for building

things on the Web.

We originally modeled the navigation to match our package

organization—core, product, and marketing—prioritizing that

information over the findability of searching for specific styles.

The style guide also lacked search and hid styles behind

several layers of navigation, forcing multiple clicks before

people found what they were looking for.

140

141

I found myself acting as a human style guide search, with

people pinging me to find what they were looking for rather

than finding it themselves.

With research outlining people’s struggles to find styles, and

the fact that we were wrestling with an aging web app we

originally used for the style guide, we decided it was worth the

effort to rebuild and redesign.

The new documentation site listed all our styles in the

navigation, and we added a contextual search that helped

people find documentation with similar keywords—such as

finding “color” within utilities vs. support variables.

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Figure 2. Primer documentation and search.

Getting a documentation site set up early on was important.

Looking back, I don’t think it was the wrong choice to

repurpose an old web app at first—it may not have been ideal,

but it did what we needed. It is important to re-evaluate the

quality of your documentation site over time though, to ensure

it meets user needs, and is scaling with your design system as

it grows.

Grow adoption through many touchpoints

When you don’t have that big moment to launch your design

system, use every opportunity to share its value. You’re

building systems to solve real problems and you know what

your goals are—take some time to share those goals and how

you plan to reach them. These details are helpful when you’re

trying to show how changing something like a few lines of CSS

matters.

At GitHub, we used lots of small interactions to promote Primer

and the design systems team. Here are a few ways we made

our piecemeal approach successful:

142

143

Creative comments in code review

We started to jump in and comment on pull requests in the

GitHub app that touched CSS or design patterns we were

trying to improve. This gave us an opportunity to suggest

changes in line with the new design system, and point people

to our documentation site so they knew it existed.

We spread the word about our team and our availability to help

by adding simple comments to pull requests, such as, “Ping the

design systems team,” or, “Find us in the design systems Slack

channel.”

Over time, people started to CC us on issues and pull requests,

and we took advantage of features like Code Owners so we got

automatically requested for review when someone made CSS

changes.

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Figure 3: Servbot comments on pull requests to recommend using

system variables instead of static values.

Recently, we’ve started adding bot scripts that comment

on pull requests with simple feedback. With lots of points of

communication about our team and Primer, we’re growing

awareness and adoption of design systems.

Show, don’t tell

We noticed when teams updated the GitHub UI, they would go

to another part of the website and literally copy and paste the

markup and CSS. Refactoring away old instances of patterns

is our best fight against the continued reuse of old patterns. It

is a long-term initiative, but we can prioritize the most popular

and troublesome patterns.

Respond quickly to support requests

Most teams at GitHub have an on-call duty rotation called First

Responder. It means one or more team members are on call to

triage issues, respond to support requests, or provide code

144

145

review.

As support requests grew for design systems, we adopted this

process to help respond to people in a timely manner. Over

time, we’ve iterated on the process and created a number

of automated scripts that help track notification items that

need attention. Responding to people quickly increases

the likelihood that they react positively to our team and

recommendations.

Figure 4: First responders use a hubot script to see which items need

their attention.

Presence and responsiveness

Particularly early on, we made the simple effort to be available

via Slack to answer questions, pair on code, or jump on a call to

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

walk through something. It takes time away from deeper work,

but allocating time to this is worth it to help win friends and

champions on other teams.

Figure 5: The GitHub Design Systems team are available to help in our

slack channel.

Publishing and
distribution at scale
Most of my recent experience working on design systems has

been on large-scale web applications like Etsy and GitHub.

The scale to which those systems need to be distributed and

published usually requires more complex infrastructure than a

small company with a small system and small team.

146

147

However, many companies intend to grow the size of their

team and scale of their product over time, so understanding

how to set your design system up for scalability will benefit you

in the future.

Let’s walk through methods of style organization, distribution,

and public vs. private documentation and code, to help you

consider what’s right for you and your team.

Package management and organizing modules

Design systems should be built for change, large or small. This

isn’t just important for how you code your system or use things

like variables or design tokens—it’s important for how you

organize modules, and version, and distribute them too.

At GitHub, we iterated on how we organize and package styles

multiple times. Like Etsy, we pulled our design system out of

the GitHub monorepo into its own repo. We wanted to have

more control over the changes made and when those changes

made it back into GitHub.com.

We also use Primer for more websites and applications beyond

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

GitHub.com. Conference websites like git-merge.com are built

with Primer, as well as community websites such as developer.

GitHub.com and opensourcefriday.com.

Not all these sites need the full suite of styles we use for

GitHub.com, and GitHub.com doesn’t use all the marketing-

oriented styles in the core application. This led to taking a

modular approach with style organization and influenced how

we packaged and distributed Primer.

 Nate Whitson, LinkedIn

Listen online: Versioning

Versioning the entire system vs. versioning by
module

Versioning the entire system means everything within the

system belongs to just one version number and can only

148

https://dbtr.co/git-merge
https://dbtr.co/git-developer
https://dbtr.co/open-source-fri
https://dbtr.co/github
https://dbtr.co/linkedin-versioning

149

be installed in its entirety. This could be likened to browser

or software versions. When you update to a new version

of Google Chrome or your phone’s OS, for instance, you’re

updating the whole piece of software in one go.

If you were to version your design system in the same way, it

would mean everything within the design system would be

updated too.

For example, you may have updated your font styles, added a

new navigation component, or deprecated an old grid layout.

When a user of your design system chooses to upgrade, they

get all of those changes together. This still gives teams the

flexibility of when to update the system, but a more granular

approach can be helpful as your system scales.

Versioning individual modules means having a version number

for every component or group of styles within the design

system. So if you put your button component into one module

and your utility styles into another, they would each have

their own version number, such as primer-buttons@2.4.0 and

primer-utilities@2.8.0.

You can still maintain a package that includes the entire set

of the modules and version that too. For example, primer-

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

css@9.5.0 includes primer-buttons, primer-utilities, and all

the other Primer modules. So you can provide the best of

both worlds—the option to use the entire system, or just use

individual modules.

This modular versioning approach does require more effort for

initial setup because you need to work out what to boil each

module down to. For instance, should you have a module for

layout utilities as well as a grid system, or combine them all into

one layout module?

The benefit of this approach is that users of your design

system can choose to upgrade just the bits they need. Giving

teams the option to selectively update when they have the

time to do it can mean they’re more likely to iteratively keep up

to date—whereas the overhead of updating the entire system

in one go can act as a barrier.

Versioning by package enables a design systems team to push

updates more frequently without the pressure of forcing an

update to the entire system.

Compared with versioning the entire system in one go,

versioning by module creates more flexibility around major

150

151

design systems releases, can lead to a culture of continuous

development, and enable your systems team to move faster

overall.

Releases, branches, and version numbers

Design system teams often have to balance competing

priorities. Attending to bug fixes or other commitments has to

be balanced with intensive projects requiring more research

and planning, such as developing a new color system or

bringing in a newly supported feature like a CSS grid.

Your publishing workflow needs to work for both the users and

the maintainers of the design system. Maintainers want to have

confidence in what they test and ship. Users of the system

want to have clarity on status and what type of updates they’re

getting.

At GitHub, we found the combination of versioning and

organizing releases with Git branches gave us the right amount

of flexibility in planning and shipping new design system

releases.

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Figure 6: Tracking multiple Primer releases with GitHub Project

boards.

We maintain a “dev” branch that includes work in progress and

creates a new branch for each individual release. Since Git

allows us to create multiple branches of the design systems

code, we can work on a minor or patch release at the same

time as a major release. This means we can take our time with

a major release that might include breaking changes, while

also shipping timely updates and bug fixes in minor and patch

releases.

152

153

Versioning our system and using Semver makes this workflow

possible. We can clearly point to a specific version number for

each release, and know by the Semver system what type of

updates are included with it, and therefore what type of testing

we need to do.

Since Semver is a well-recognized standard for versioning,

it helps clearly communicate to users of Primer—internally

at GitHub or externally—what updates they’re getting and

what type of testing they may need to do in order to use the

updates.

Nate Whitson, LinkedIn

Listen online: Building a Public vs. a Private System

Public vs. private

As your system and its number of users grow, you might find

yourself considering whether to make your design system

https://dbtr.co/semver
https://dbtr.co/linkedin-public

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

public to some degree. There isn’t a one-size-fits-all solution to

this—it should be based on what’s right for your team. Making

a system public doesn’t have to be an all-or-nothing approach,

there are multiple ways of breaking down what’s public.

Many pioneering teams have created and published beautifully

designed documentation, such as Material Design, Lightning

Design System, and Shopify’s Polaris. We shouldn’t assume

the solution that worked for these companies is right for

everyone else. These are companies making a significant

investment in design systems. Plus, they have the broader

objective of wanting external developers to use these systems

to build on their platform.

When deciding what, if anything, is made public, you should

prioritize based on your company’s needs, rather than

standards set by other companies.

Here are a few ways you can make your design
system public:

Public documentation only

154

https://dbtr.co/salesforce-lightning
https://dbtr.co/salesforce-lightning

155

You might decide that making the source code public isn’t right

for your team, but you want to make the documentation public.

Marvel’s style guide and MailChimp’s patterns are examples of

public documentation sites that don’t (yet) share their source

code.

Open-source design systems

Many companies open-source their design system. This

means the general public can open issues to request new

features, give feedback, or let the maintainers know of bugs.

Maintainers can also choose to accept contributions in the

form of code or documentation changes via pull requests. If

the maintainers choose, they can make the design system

available for modification and reuse by adding a license.

The US Web Standards, Primer, Help Scout, and Solid are all

examples of design systems open-sourced on Github.com.

https://dbtr.co/marvel-styleguide
https://dbtr.co/mailchimp-patterns
https://dbtr.co/git-licensing
https://dbtr.co/usa-gov
https://dbtr.co/github-primer
https://dbtr.co/help-scout-style
https://dbtr.co/buzzfeed-solid

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Figure 7: Buzzfeed’s design system, Solid, is open-sourced on

GitHub.

Open-source the docs with your code on GitHub

You don’t necessarily have to share a crafted documentation

156

157

website—you can just share documentation written in

markdown format and it will be rendered and styled on GitHub.

Another option is to publish the docs via GitHub pages. This

can be a low-barrier way to share documentation since GitHub

hosts the documentation, giving you a default public URL if you

don’t add a custom domain.

Share a ZIP file to download

If you want to keep the source-code and/or the npm packages

private, you could choose to share the code for your design

system so it can be used by others. This might be a nice

option if you don’t want to make in-progress work on your

system public, or add the overhead of managing open-source

contributions, but are still happy to share the code for use by

others.

https://dbtr.co/github-pages

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

158

Projects like Lab by Compositor (a design tool for creating

React components for design systems) use the Releases

feature on GitHub to share release notes and a ZIP file

download of the software. They also use the repo to host

documentation and issues to get feedback from users.

Figure 8. Color swatches in Storybook.

Publish a Storybook of your UI components

Storybook has become a popular tool for design systems

teams, especially for those using React, though it can also be

https://dbtr.co/github-lab
https://dbtr.co/github-releases
https://dbtr.co/storybook

159

used with Sass or CSS-based design systems too. As Brad

Frost describes, Storybook is a “workshop” tool designed to

output rendered examples of your styles and components,

which you can use in development for testing changes. Style

guide documentation is your “storefront” and includes crafted

and detailed documentation with information like usage

guidelines and code-style principles.

Figure 9. Notification styles in Storybook.

Providing rendered examples of your components, even

without detailed documentation, is still very useful to users,

maintainers, and would-be contributors of your design system.

It provides a catalog of what’s included in your design system.

https://dbtr.co/workshop-storefront
https://dbtr.co/workshop-storefront

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

Pattern Lab (created by Brad Frost), Fractal, and React

styleguidist are other tools that provide similar features

to Storybook with options for documentation and code

examples. All these tools can be used without sharing your

design system’s source code, and give you options as to what

level of documentation you share.

As you consider varying degrees of access to your
system, also consider some of the reasons teams
make their systems public:

No authentication barriers to sharing

Anything behind authentication, like outside VPNs or firewalls,

means one more barrier to access. I know this firsthand since

we have a new, in-progress documentation site for Primer that

requires staff login. People frequently think the style guide had

been taken down or don’t even know it exists.

Authentication also makes it difficult to give external

contractors access. It’s a small barrier, but it can have a

negative impact and mean people who could be using your

https://dbtr.co/pattern-lab
https://dbtr.co/fractal
https://dbtr.co/react-styleguidist

161

design system documentation can’t or won’t because it’s too

much hassle.

Helps with recruiting through previewing design maturity

Design systems are a popular topic in the design and front-

end community right now and might be part of a prospect’s

decision to choose one company over another.

Design systems can be a sign of maturity for a team, and

also provide insight into what it might be like to work at that

company. Especially if you’re trying to recruit directly for your

design systems team, making the documentation public is an

obvious way to attract people and set expectations.

Opens you up for input from the community

Making your documentation and/or your source-code public

opens you up to external contributions, whether via simple

feedback comments or direct contributions to code. This risks

overhead, particularly if your system becomes popular, but

the benefit is that you get feedback and insights from a wider

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

range of people.

Primer is open-sourced on GitHub. We’ve been increasingly

working in the open and sharing issues and pull requests so

people can see how we work. We’ve noticed a gradual increase

in contributions from the community and internal GitHub

contributors. People generally feel proud to contribute to an

open-source project that can benefit anyone.

Conclusion
There’s a lot that goes into the rollout of your design system,

and much of it will extend naturally from how you decide to

build your system, who you’re working with, and the best way

to spread adoption inside your company.

Creating a perfect rollout strategy is less important than

ensuring you’re involving the right people, being clear about

your end goals and how your strategy supports those, and

documenting your plan methodically through each step.

163

Design systems are always evolving, and the way you share

and encourage adoption of new iterations will evolve along the

way as well. An intentional, thoughtful strategy with room to

scale will go a long way to making sure adoption is treated as a

crucial part of the building process.

Further reading

•	 A successful Git branching model

•	 The workshop and the storefront

•	 Maintaining Design Systems

https://dbtr.co/git-branching
https://dbtr.co/frost-storefront
https://dbtr.co/atomic-ch5

PUTTING YOUR DESIGN SYSTEM INTO PRACTICE

165

EXPANDING YOUR DESIGN SYSTEM

Chapter — 05

Expanding your
design system
More than the sum of its parts
By Marco Suarez and Sophie Tahran

167

As mentioned in Chapter 1, early software programming was

limited by the speed and capability of hardware. But over time,

hardware became increasingly faster and cheaper, and the

inefficiency of software became even more noticeable.

As product teams are expected to move faster and faster,

speed and efficiency is an ever-growing concern. However,

design systems enable teams to find speed, efficiency,

and consistency through reusability. As you experience

these benefits, other areas of inefficiency that were once

unnoticeable become glaring.

Alignment is often one of those areas. Aligning team

members, teams, and a company around things like direction,

expectations, and quality is critical to moving and scaling

quickly. Without alignment, friction increases and velocity

slows—something product teams cannot afford.

A design system is a fantastic way to create alignment around

interface design and implementation. But beyond components,

teams can build alignment with vision, design principles,

process, and voice and tone.

EXPANDING YOUR DESIGN SYSTEM

Vision
A vision statement moves everyone toward a common

destination. Vision is your North Star. It’s a reusable statement

that gives context to your work to help your team stay on

track and in sync. A vision statement declares what your team,

product, or company is attempting to achieve and why it’s

worth achieving. It’s comprehensive yet memorable, elevating

yet attainable.

Vision creates clarity, making non-essentials easier to identify.

Momentum is far easier to build once everyone knows where

they’re going and why.

A few years ago, the Starbucks product team was reorganizing

and needed to clarify—for themselves and the entire

company—their reason for existing. In a corporation as large

as Starbucks, it’s vital to clearly and succinctly express the

purpose and value of your team.

“We create digital products that make our customers happy

and our partners proud.” This statement became their rallying

cry. The vision grounded decision-making to improve the

experience for customers and partners (baristas, managers,

office employees) as well as achieve business goals.

168

169

PRO TIP — Creating your vision statement

To create your vision statement, describe
what your team, application, or company
should look like in two to five years. Does
the culmination of your present work add
up to that description? Is that description
worth spending the next several years
realizing? If not, adjust your aim. Maybe
you need course-correcting or maybe
you need to aim higher.

EXPANDING YOUR DESIGN SYSTEM

EXPANDING YOUR DESIGN SYSTEM

“It helped us create a system that, we think, is
clear and scalable across the various global
markets we serve while still being unique.”

Jason Stoff — STARBUCKS

Informal vision statements for discrete projects also became

useful. “Clarity first, then elegance if possible,” was the guiding

principle of a recent redesign.

When we had a few design options for a given
feature to discuss as a team, we referred back
to our goal of clarity at the expense of all else,
then worked to find a way (if possible) to make it
elegant.

Jason Stoff — STARBUCKS

Nick Grossman of Union Square Ventures gives several

examples of how a North Star impacts company alignment

https://dbtr.co/2GAuzHy
https://dbtr.co/USV

171

in his talk, “Purpose, Mission and Strategy.” One example

he gives is about Foursquare’s product focus moving from

the consumer app to the direction of being a location data

platform that could power other applications. This was a

massive shift in direction. It was the vision “making cities

more delightful” that provided a much-needed North Star for

employees to accept and embrace this new model. Grossman

says, “It was a watershed moment for aligning the company

around a new direction.”

It’s helpful to assess your progress as a team. At Etsy, we held

retrospectives after every major launch. A retro is a meeting

to celebrate the things that went well and identify the things

that didn’t for a particular launch. It’s also an opportune time to

check your alignment with your vision.

Design principles
Designers often operate with their own implicit set of

standards to evaluate the quality of their work. But when teams

https://dbtr.co/nick-grossman-USV
https://dbtr.co/focused-retros
https://dbtr.co/operationializing-design
https://dbtr.co/operationializing-design

EXPANDING YOUR DESIGN SYSTEM

PRO TIP — Setting the groundwork for your principles

Creating your principles can seem like
an overwhelming task. Before getting
to work, establish a set of goals your
principles must achieve. Here are a few
examples:

•	 Should they describe the output or process?

•	 Should they be a sentence or a phrase?

•	 Who should they benefit?

•	 How should they be used?

Begin your work with a large amount of raw data collected

from your team through discussions, survey, or interviews.

Then, work through a process of combining, refining, and

evaluating until you’ve arrived at a comprehensive and

distilled set of principles. Etsy has a great article about

their own principles creation process (https://dbtr.co/etsy-

design-principles).

172

173

grow, explicit standards become necessary to unify all with a

shared language and a guide to evaluating the work. How do

you define good design? How do you know what’s essential

and what’s arbitrary? How do you know when something

is ready to ship? How do you know if you’re on the path to

achieving your vision?

“Principles are important for design systems
primarily for describing how it was created, and
how the makers of it would intend it to be used."

Rich fulcher — GOOGLE

https://dbtr.co/google-principles
https://dbtr.co/google-principles
https://dbtr.co/google-principles

EXPANDING YOUR DESIGN SYSTEM

Figure 1. Lyft’s design principles build upon each other.

A system of principles can provide the answers. Design

principles act as a reusable standard for designers to measure

their work. They replace subjective ideals with a shared

understanding of what design must do for users. Just as

guardrails keep you safe and on the road, design principles

keep teams on the path to achieving their vision.

174

175

Posting your principles on the office walls, creating a computer

desktop wallpaper, adding them to your design systems site,

or printing them on notebooks are all great ways to keep them

top of mind. Task your most senior designers with using them

in every design critique to ensure the new language is adopted.

This new system of language will become a vital part of your

design system because it creates alignment, enabling your

design team to scale.

“Disagreements happened less and less
because we were now aligned.”

Steven Fabre — INVISION

While designing InVision Studio, the design team realized

far too much time was spent debating solutions. So a set of

principles was drafted to help navigate the complexity of

designing software. These principles were used to guide

individual decision-making, help reach agreements faster

as a team, and acted as a transcendent standard to create

harmony and cohesion throughout the product. The principles

https://dbtr.co/building-the-team

EXPANDING YOUR DESIGN SYSTEM

were modified over time as Studio evolved and needs changed,

but these principles aligned the team and helped them keep

the velocity they needed.

Jesse Bennett-Chamberlain, Shopify

Listen online: Principles And Why They’re Important

Process
Providing a clearly defined process for how user experience

problems are approached and solved builds alignment within

product teams. This consistency helps to remove friction and

build velocity.

“It is only in the repetition of the craft that he or
she masters the art.”

Samuel Avital — MIME

176

https://dbtr.co/shopify-principles

177

Process guides designers through a series of clearly defined

milestones, each with different objectives and deliverables.

These milestones act as interdependent components that,

when used together, improve the probability of arriving at

optimal solutions.

A repeatable process offers several key benefits:

01.	 It provides clear expectations within each step, allowing

you to focus solely on the tasks at hand without worrying

about what to do next

02.	 It builds data within each step that can be referenced and

used to inform future iterations or course-correct low

performing launches

03.	 It creates an understanding of the roles and

responsibilities of each team member involved—bringing

the right people in at the right times, making everyone’s

involvement beneficial to the quality of the output

04.	A repeatable process will ensure progress is smooth,

efficient, and predictable while also improving the quality

https://dbtr.co/IBM-design-thinking
https://dbtr.co/IBM-design-thinking

EXPANDING YOUR DESIGN SYSTEM

and consistency of your work.

At InVision, our process has 6 steps:

Figure 2. The InVision design process.

01.	 Understand: First, we use customer research and insights

to gain a deep understanding of the problem space and

identify how it aligns with our business goals. Product

management leads this phase and works with the research

team to conduct interviews, gather data, and perform

competitive research.

02.	Explore: The design team then ideates and explores

178

179

possible solutions. They work with product and research

teams to produce wireframes, core flows, and user

journeys.

03.	Define: Once a potential solution has been identified, the

product team works to align everyone on what success

looks like. The output of this work is a problem statement

and defining measurements of success.

04.	Design: Refining the solution is design team’s

responsibility. They work with the research, product, and

engineering teams to develop core flows, prototypes, and

identify tech requirements.

05.	Build: Engineering translates the design and prototypes

into reality. The product team orchestrates quality

assurance, support documentation, and the sales and

marketing teams.

06.	Learn: At this point, we observe the effectiveness of our

launched solution. The product team collaborates with the

research, design, and engineering teams to gather insights

to measure against our success metrics. We use these

insights to inform our next steps and start the process

EXPANDING YOUR DESIGN SYSTEM

over again.

Voice and tone
Sophie Tahran, InVision’s UX Writer, weighs in on the value of

writing guidelines—and how to create them.

Great writing is an essential part of great design, but even

in-house UX writers aren’t able to edit every single word in

a product. That’s where writing guidelines come into play. A

source of truth promotes good communication, credibility, and

consistency—no matter who’s writing content.

Every writing guide should cover both voice and tone. While

your voice generally stays the same (like a personality), your

tone shifts according to the situation (like an attitude). Both

are an essential part of communication—and you can’t ship a

product without effectively communicating it.

Because voice identifies who we are and defines our

180

https://dbtr.co/2tVbRrm
https://dbtr.co/mailchimp-styleguide

181

relationships, building writing guidelines early on is one of the

best ways to gain credibility with your users. They’ll begin to

recognize you, and know that they can trust you.

Writing guidelines also help evolve your voice. Just as your

personality matures over time, your voice will evolve as your

company grows. Guidelines define what you should sound like

right now, so when you do steer away from them, you’ll know

that you’re doing so intentionally. (“I’ll just throw an emoji in

this subject line,” turns into, “Hey, let’s test how emoji perform

and see if they’re worth adding to our writing guidelines.”)

Without thoughtful writing guidelines, teams risk allowing their

voice to be determined by patterns instead of users’ needs,

and end up making decisions solely based on what they’ve

done in the past.

EXPANDING YOUR DESIGN SYSTEM

Jesse Bennett-Chamberlain, Shopify

Listen online: Voice and Tone in Polaris

Building writing guidelines
Start with an audit. Talk to people across (and outside)

182

https://dbtr.co/shopify-voice

183

the company: designers, writers, support agents, co-

founders, users, etc. Your goal is to get their impression of

the company’s personality. Consider not only conducting

interviews, but also creating mood boards—visual collections

of colors, people, places, and more—to represent more

emotional, intangible qualities.

Define the findings. Have a core group of people, normally

writers, narrow down the best words to describe what you

found. Is your voice human, real, and bold? Or is it kind,

experienced, and empowering? Take into consideration not

only how you sound now, but also what you aspire to be and

avoid (“InVision is never clickbait-y or pandering”).

Tone can be more difficult to hammer down. It shifts according

to the situation, so it’s sometimes more helpful to provide

direction than it is to identify characteristics. State your key

priorities, like, “Always provide clarity,” and, “Consider the

user’s emotional and mental state.” This is also a good place

to determine whether humor has a place in your writing, and

where you fall on the formality spectrum.

Once you’ve identified the more nebulous aspects of your

EXPANDING YOUR DESIGN SYSTEM

voice and tone, carry that same thinking into the tangible.

What should your different channels look like? Do you use

sentence case or title case?

You may find that you have a need for multiple guidelines—

voice and tone within your design system, a company-wide

style guide focusing on words only, and brand guidelines that

also encompass visual design.

Get buy-in. Potentially more important than building voice

and tone guidelines is encouraging everyone to follow them.

Anyone who works with content should have a chance to sign

off.

Find a home. Your guidelines need to be easily found and

integrated. If you’re building voice and tone into your design

system, follow MailChimp and Shopify’s lead in giving writing

its own section, separate from components, principles, and

layers. You can also go one step further by creating a separate

list of copy patterns (like Mailchimp did) for grab-and-go

words.

Develop. Writing guidelines are living, breathing documents

that require maintenance as your company grows. From the

start, use an editable Paper or Google Doc—and better yet,

schedule monthly check-ins.

https://dbtr.co/mailchimp-patterns

185

Invest time in writing guidelines from the start. Most

companies have more people representing their voice than

you’d expect, from product designers to support agents. By

having a source of truth—and creating it together—you can

offer users a better experience.

“When you have guidelines that are in conflict,
then you have to go back to the principles and
decide which are more important."

Lori Kaplan — ATLASSIAN

Conclusion
Just as design is far more than the sum of its parts, your

design system can serve as far more than a components-only

guide. Vision, principles, process, and voice and tone expand

your design system into additional areas where reusability can

https://dbtr.co/lori-kaplan-guidelines
https://dbtr.co/lori-kaplan-guidelines
https://dbtr.co/lori-kaplan-guidelines

EXPANDING YOUR DESIGN SYSTEM

also increase speed and efficiency.

Design systems have changed the way we design and build

applications—so much so that we must look at the future of

design through the lens of systems. In a future where design

systems gain wide adoption, design could take on many new,

exciting forms.

Further reading
The Importance of Product Vision to Product Leaders

7 Problems Growing Design Teams Face

IBM Design Thinking

Design Principles Behind Great Products

Creating Etsy’s Design Principles

Design Doesn’t Scale

https://dbtr.co/freshtilled-vision
https://dbtr.co/7-problems
https://dbtr.co/IBM-loop
https://dbtr.co/design-principles-products
https://dbtr.co/etsy-design-principles
https://dbtr.co/design-doesnt-scale

187

A Matter of Principle

A Study of the Design Process

UX Tools for Every Step in Your Design Process

Nicely Said

How Snow White Helped Airbnb’s Mobile Mission

MailChimp’s VoiceandTone.com

https://dbtr.co/matter-of-principle
https://dbtr.co/eleven-lessons
https://dbtr.co/testing-tools
https://dbtr.co/nicely-said
https://dbtr.co/snow-white
https://dbtr.co/mailchimp-voice

EXPANDING YOUR DESIGN SYSTEM

189

THE FUTURE OF DESIGN SYSTEMS

Chapter — 06

The future of
design systems
To infinity and beyond
By Roy Stanfield

191

I find it exciting to see design systems empower design teams

to scale and consistently produce solid products, but I know

we’re only scratching the surface of our potential. There’s so

much more we can accomplish.

At Airbnb, we’ve been pondering how we might push our

design system in new directions, and we’re inspired by design-

forward companies that share our desire to craft the future of

design systems.

In this chapter, I want to introduce you to a new way of thinking

about design systems. Design systems can transcend the

walls of a single company to exist as shared standards

and customizable tooling with help from the open source

community, which can accelerate development and eliminate

the need to start systems from scratch. If we’re really bold,

we could be creating adaptive, intelligent systems that are

context-aware and compose themselves—reducing our

workload and ultimately unlocking AI-powered design.

But, I’m getting ahead of myself. Let’s start with nuts and bolts.

THE FUTURE OF DESIGN SYSTEMS

Building a common foundation
A designer’s familiarity with the concept of a design system

is based on the systems they’ve encountered, what platforms

they’ve been tasked to support, and where they’ve worked.

Books like this one help us converge on a high-level definition

for design systems, but a more rigorous definition will ensure

the utility and flexibility of our work.

Finding a standard that supports shared goals will involve

decoupling a design system from its implementation,

cataloging common UI and associated states, and more

strictly defining design primitives and components. This

could then be expressed in a file format that’s able to define a

component or design system more completely.

“Imagine as if where I built this thing, gravity
works one way, and when I install it in your office
gravity works another way."

Tim Sheiner — SALESFORCE

https://dbtr.co/salesforce-parts
https://dbtr.co/salesforce-parts
https://dbtr.co/salesforce-parts

193

An example of differing goals

Currently, existing systems reflect the specific needs of the

companies that created them. Since each company is building

an entirely independent system, design system development

starts from scratch—possibly with help from a web toolkit like

Bootstrap, relying on the internal knowledge of the team, and

only focusing on top-level needs. As a result, even the best

systems contain flaws and lack the necessary tooling to speed

development and track results. And if a company’s priorities

shift, its design system must shift, causing another section of

the design system to be built in the same limited way.

For example, one of the reasons Airbnb created DLS was to

minimize and sync differences in UI between our supported

Android, iOS, and web platforms. In The Way We Build, VP of

Design Alex Schleifer writes, “Universal and Unified define the

system’s approach we apply when defining patterns. Is it part

of a greater whole? Does it work across devices?”

In our idealized vision, a mockup easily ports between

platforms—creating a better design and development

experience. This cross-platform UI would give Airbnb guests

and hosts alike the same end-product experience as if they

jumped between mobile app and desktop web.

https://dbtr.co/airbnb-build

THE FUTURE OF DESIGN SYSTEMS

In contrast, supporting multiple device platforms was initially

less of a concern at Etsy, where the main priority was to scale

its web platform. During my time there, the team built the

web toolkit with the core website as its primary focus. Later,

Etsy expanded upon its toolkit to support different branding

elements for other internal web initiatives. Karyn Campbell

describes what it was like modifying the Etsy design system

while making Etsy Studio. “While we made a conscious

decision to depart in some instances with the etsy.com UI in

order to birth this new brand, we also retained many underlying

components that our design systems team had created.”

A priority at Airbnb was having the same functional and visual

voice across platforms. A priority at Etsy was to support

multiple web products with varying brand initiatives. Both were

valid needs. A shared standard for design systems would need

to ensure a solid foundation so that both these and other real-

world priorities could more easily be achieved.

Gathering examples of different design system priorities

will help create a checklist to make sure your design system

standards address real concerns. Any company adopting

these suggested standards could be assured their design

system development focuses on immediate company needs,

https://dbtr.co/etsy-studio

195

as well as adhering to standards they plug in to a growing body

of open source code and tools that support most operational

transformations that could be encountered.

But what should be in the design system standard?

Imagine a tool that can specify which design primitives, (e.g.,

fonts, spacing, color—more on that below), components (and

their states), platforms, and what documentation and testing

are needed to have a fully formed design system. The tool

would also allow the designer to specify which components

were not yet needed and which platforms could be added

later. With this tool, a designer would have a framework

stating what aspects of the design system were completed or

outstanding. A product manager could export documentation,

and a developer could easily export UI and UI tests—no longer

needing to translate UI from Sketch to code, or from web code

to native implementation.

If created today, not only would this tool provide industry-

wide savings, but it would start to standardize the low-level

definition of a design system. Working backward, let’s now

imagine what kind of definitions such a tool would need in

THE FUTURE OF DESIGN SYSTEMS

order to exist.

First, decouple the design system from any specific

implementation. We’re not creating React components (nor

other web implementations), nor Android UI, iOS UI, or even

Sketch files. Instead, our system is an abstraction that can be

deployed to any target implementation. We’re going to need

a file format to describe this abstracted design system. The

exported format could be rendered into views by open source

modules specific to each target implementation.

Figure 1: Single source of truth concept proposed by the Design

Tools team at Airbnb, originally illustrated by Jon Gold.

197

Next, codify the definitions of design primitives and

components so they are fully expressed in the design

system format. Dang, .dsf extension is already in use! Guess

we’ll have to settle for the .dang file extension!

Design primitives are the building blocks of a UI. These include

specific predefined colors, fonts, spacings, and more. They

are foundational visual elements that can be combined into

components. Changing primitives is echoed throughout a

given design system’s components, and doing so changes the

overall feeling of a brand. Additionally, what are components?

We’ll also need to codify those. Components are mostly views

composed of design primitives and smaller components

whose minimal internal logic is mapped exclusively to state

and state change. Benjamin Wilkins, Design Lead on the

Design Tools team at Airbnb, describes the difference between

primitives and components in minute 7:00 of his talk, "Thinking

in Symbols for Universal Design."

Next, we’ll need to catalog all of the common UI components

in use today. Just as a typeface may have its unique take

on the letter “A” (the letter’s visual appearance may vary

between typefaces while its meaning is maintained), a .dang

file would have a text input component that varies in visual

representation but not functionality. The catalog will need to

https://dbtr.co/universal-design
https://dbtr.co/universal-design

THE FUTURE OF DESIGN SYSTEMS

group components with their accompanying states (selected,

focus, on-tap, error, etc.) and detail interactions to distinguish

between mobile, desktop, and TV UI.

What are the benefits of this catalog? To start, functional

tests for common components could be easily automated

through contributions from the open source community. In

many cases, UI engineers would no longer need to write their

own tests. The cataloged components would also enable

a marketplace of boilerplate design systems that can be

installed interchangeably, and against which custom UI can be

built and substituted. This means bootstrapping the creation

of every design system is no longer necessary.

Lastly, we need to allow for the evolution, growth, and

extensibility of design systems built upon the shared

standard. Just because we’re aware of which components

are needed today doesn’t mean that we’re able to predict

all the elements needed for future innovation. A process

for modifying existing components or creating wholly new

ones is in order. Thoughtfully standardizing our collective

knowledge will produce a more consistent user experience,

accelerate development, decrease investment needed from

individual companies, and enable open source and collective

development of next-generation design tools that conform to

199

shared conventions.

Creating a single
source of truth
The elements that make up a design system—principles,

UI components, patterns, and documentation—create the

human-computer interaction layer for our apps. Product

designers and system designers are directly responsible for

this layer, and therefore should own the design system and its

representation in the codebase.

There are two hurdles to achieving a single source of truth.

First, our current design tools are inadequate. Most only

allow us to produce images of UI and prevent designers from

achieving product level fidelity. Second, if the implementation

of a design system is spread across multiple repositories

(Android, iOS, React Native, React, etc.), collected in a Sketch

file, and documented on a website, then there really is no

single codebase to represent a truthful account of the system.

https://dbtr.co/patterns-components

THE FUTURE OF DESIGN SYSTEMS

Lacking a single source of truth, the design system—spread

out over multiple codebases—becomes an amalgam of

sources that easily fall out of sync.

Our tools

Designers use tools like Sketch, Illustrator, or Photoshop to

draw pictures of UIs, yet these are actually just representations

of interactive components that look different, behave

differently, and contain different data depending upon the

state of the app at a given time. As Colm Tuite notes in the

article "Design tools are running out of track. Here’s how we

can fix them,“ Think of the number of simple interactions which

are commonplace in almost all of our products yet cannot be

communicated through our design tools.”

Tuite then mentions interactions and states such as hovering

over a button, focusing an input, checking a checkbox, and

identifying scroll areas. He points out that our design tools

aren’t prompting designers to think with product level fidelity,

and so a designer’s work is usually missing some of its most

important details.

https://dbtr.co/design-tools-track
https://dbtr.co/design-tools-track

201

“For each change or addition to
the system, a cascade of work is
created. Documentation has to be
updated, each of our apps’ code has
to be changed (in Swift, Java, and
JavaScript), and Sketch templates
have to be redrawn. These efforts
have to be coordinated, and each
source must always be in sync with
the others. Code is relatively easy to
tie together, and we already have an
infrastructure that allows for version
control and continuous integration
of our applications. Until now though,
maintaining Sketch templates relied
on manually-intensive human touch
points.”

JON GOLD
AIRBNB

THE FUTURE OF DESIGN SYSTEMS

Figure 2: Detail of the Airbnb DLS system Sketch file. DLS, UX

Platforms, Infrastructure. © Airbnb, Inc.

Sketches of apps are then handed off to developers who

have to translate them into working UI. Between the designer

and the 4 developers that it takes to convert the design into

Android, iOS, React Native, and React, it takes 5 different

members of the team begin to bring the design up to product-

level fidelity. Since the original sketch was missing details

about state and interactions, a back-and-forth conversation

between designer and multiple developers is needed to

make the designs production-ready. And because the

implementation is coded by 4 different humans, it’s likely that

unwanted variation creeps into each implementation.

203

For similar reasons, many designers have focused on

sharpening their coding skills for at least 1 platform. There

are many advantages to this, but if you’re a systems designer

creating components for cross-platform use, coding those

components for a single implementation is not yet enough.

Multiple implementations

The attempt to reach a single source of truth is further

complicated when working on cross-platform design systems.

Jon Gold identifies places where Airbnb’s DLS workflow could

be improved in "Painting with Code."

At Airbnb, Gold has taken some exciting first steps toward

solving this problem with his project React Sketch.app. With

this tool, layered Sketch files can be generated from the React

codebase. This means components in the Airbnb React repo,

which already have product-level fidelity, can be populated

with real data and rendered to a Sketch file. It’s another reward

for those adventurous designers willing to learn React!

It’s also a touchstone technology, pointing us toward

understanding mockups not as the source of truth, but instead

as another target for automated output. With these generated

https://dbtr.co/painting-code
https://dbtr.co/react-sketchapp
https://dbtr.co/react-beginners

THE FUTURE OF DESIGN SYSTEMS

The key in making great and growable
systems is much more to design how
its modules communicate rather than
what their internal properties and
behaviors should be.

ALAN KAY
LEGEND

204

205

files, we get a clear picture of which components are sitting

in the repo. Best of all, a product designer relying on Sketch

does not have to change their workflow and can use more

accurate files (generated by the codebase, not by hand) to

compose their work. At last, we can have confidence in how

the components look at product-level fidelity and in how these

components behave with real data.

React Sketch.app is great because it syncs the React and

React Native repos and Airbnb’s design system Sketch files.

But what about the Android and iOS implementations? How

can designers make sure these are in sync? React Sketch.app

points the way, but we’ll have to go further.

Here, we can learn from tools and WYSIWYGs of the recent

past like Dreamweaver and Interface Builder. Tools in this

category allow users to combine elements of UI, hook the

UI up to data and interaction, and then export deployable

code. Unfortunately, these software produce code that’s not

maintainable by humans, and so few companies use them as

an official part of their process. Did these tools promise too

much and deliver too little?

Luckily, design system components are simple views with

THE FUTURE OF DESIGN SYSTEMS

minimal logic. Learn more about views and MVC architecture

here and here. Unlike the promise of tools like Dreamweaver

and Interface Builder, components are easily exported view

files that developer partners can incorporate into existing

workflows.

Solving two problems with one tool

To create a designer-controlled source of truth, we’ll

need next-generation design system tools to enable the

composition of components and to automate the output of

the design system to any number of target clients (codebases,

vector files, and documentation sites).

As outlined in the section above, if we standardize an export

format that contains production-level fidelity for components,

then other interpreter modules can be freely built to compile a

single component file into all the various flavors of production

code. Then, varied implementations of any given component

would flow from a single source of truth and would plug right

into existing workflows—saving resource-intensive and error-

prone human interpretation of mocked UI. Product designers

and design system designers would finally control the UI they

have always been responsible for.

https://dbtr.co/MVC-architecture
https://dbtr.co/MVC-architecture
https://dbtr.co/MVC-cocoa

207

At Airbnb, we’re tackling this challenge in a variety of ways,

including with Lona, our tool for defining design systems and

using them to generate cross-platform UI code, Sketch files,

images, and other artifacts. A highly experimental prototype,

Lona represents our exploratory approach to discovering

what’s next for design at scale. Taking a research-based

approach to the future of design systems encourages

experimentation and collaboration.

Intelligent systems
compose themselves
If you’ve not heard of Alan Kay, make sure to look him up.

He’s credited with inventing the graphical user interface,

Object Oriented Programming, and—with his concept of the

Dynabook—even the tablet. Given that design systems fit

firmly inside of the world that Kay and his peers built, it’s worth

listening to him.

https://dbtr.co/airbnb-lona
https://dbtr.co/alan-kay
https://dbtr.co/dynabook

THE FUTURE OF DESIGN SYSTEMS

Once the magic of design system standards enables both

private and open source development for cross-platform

use, design systems will most likely reach new heights of

functionality and popularity. Whereas siloed development

requires talented people to reinvent the design system

anew for each employer, standards-based design systems

might easily plug into a passionate community that will add

capabilities to our nascent tools.

Taking inspiration from Kay and the PARC maxim—“The best

way to predict the future is to invent it”—I’ll sketch out a

stretch goal for the future of design systems and tools in the

paragraphs that follow.

Virtuous cycle—plugging into the feedback loop

Often, our design systems contain components that aren’t

tracked in any special way. Without special consideration

and considerable development effort, the design systems

team is blind to the usage statistics and performance metrics

directly associated with the system. To gain insight into design

systems, teams must manually track which components each

product team uses, and then try to glean usability information

https://dbtr.co/invent-future

209

from product team UX research and performance metrics.

At Airbnb, we see data from the large proportion of our native

apps, which now use design system components. Connecting

these stats to user metrics lets us know which components

might be underperforming and deserve special attention.

Similar metrics also have an internal benefit. Dashboards

containing usage data aid the internal perception of the

system among product designers and engineers alike. It’s

easy to imagine that tracking the use of a design system

can go beyond recording end-user impressions (views) and

interactions. Even analyzing the usage of documentation,

design files, and other internal tools can lead to insights that

better enable product teams.

But why should such insights be limited to just a few

THE FUTURE OF DESIGN SYSTEMS

companies with the resources to create similar tooling? A

module could be built for just this purpose. It would track

where canon components are used in product and then apply

a flag to that component. These flagged components could be

polled, and usage stats could come straight back to the design

systems team. The insights would then be used to improve

internal tools and the system itself.

Layout aware

Another promising direction would be for our components

to become somewhat layout aware, and then declare their

intended use to both the system at large as well as sibling

components. Given this new super power, design system

components could now communicate where they should

generally be used and then share information about what

types of data they generally contain. Even a simplified

implementation of this functionality would help designers

instantly swap abstracted data sets to, for instance, see how

translation might affect the layout of a particular component

given a longer language like German or a right-to-left language

like Arabic.

This awareness might even go a step further with a given

211

component stating the kinds of screens or interactions

preceded by its own display, and again which kinds of

interactions or screens should follow upon user interaction.

This awareness would enable predictive assembly.

Predictive assembly—a pattern tool

Because each component now sends messages about where

it’s typically used and what type of data it usually contains, we

should also be able to see existing components predictively

assembled into screens. A future tool might allow the product

designer to view a particular component, click a randomize

button, and see the component in situ with other components

arranged in an order that more or less semantically makes

sense.

By allowing designers to up-vote particularly useful

component groupings (or patterns), a layout aware tool

featuring predictive assembly—perhaps better described as

a design system pattern tool—could become an instrumental

way in which product designers quickly discover repeatable

patterns in the system. With just a single click, a designer

would be able to compose an effective solution made of many

THE FUTURE OF DESIGN SYSTEMS

components and export the basic design for any project.

Moreover, with the advent of standardization, design systems

could become plug-and-play with compositions composed

by predictive assembly, allowing for a quick way to assess the

integrity of a given design system.

Predictive assembly would enable the product manager,

developer, or product designer to provide a set of data and ask

for a menu of pre-assembled screens that display the data. We

could then choose the best option, only correcting the layout if

needed.

It’s worth noting that if we get particularly good at predictive

assembly and consult the right minds to take it further, we

will soon find ourselves in a world where machine learning

provides artificial intelligence for plug-and-play design

systems. Among many other things, we might witness the birth

of a world where phone users could eliminate branded apps,

preferring a locally installed design system that could spin up

UI without needing to load templates over the network.

As designers, we continue to rely on intuition, performance

metrics, and user research to create products. If a large

percentage of our users can complete a task and proceed to

the next stage in the flow, then we generally call the design

213

successful. We use templating languages to add options

to a design so even more users reach their goals. But by

connecting design systems to artificial intelligence, we could

achieve a step change in customizable UI. Instead of designing

products that work for most users, systems design and AI will

apply specific solutions for specific individuals.

Designers should prepare now by discovering a bit about

machine learning, reading about the breakthroughs enabling AI

today, and finally, thinking about how ML could impact design

tools.

“There is this tremendous value to writing
things down in a way that others can
understand it.”

Richard Fulcher — GOOGLE

https://dbtr.co/machine-learning
https://dbtr.co/future-AI
https://dbtr.co/future-AI
https://dbtr.co/2GAYH5x
https://dbtr.co/2GAYH5x
https://dbtr.co/google-value
https://dbtr.co/google-value
https://dbtr.co/google-value

THE FUTURE OF DESIGN SYSTEMS

Conclusion
As digital product designers, we’re asked to ride the waves

of change in our industry. People just like us helped small

development teams create apps for desktop computing in the

1980s. In the late 1990s, other designers formed a coalition

that pressured large software companies to unite front-end

web development through the web standards project. In

the mid-2000s, we focused on communication and user-

generated content while developing patterns for creating web

apps, and just a little later, all our work was available in mobile

form factors like the iPhone. Now, after nearly 4 decades

of designed computing, design systems and AI are shaking

hands—presenting us with new opportunities for innovation at

scale.

Every designer will now be asked how they might change

custom, one-off design solutions into reusable components

that grow the system. We’ll have to think more holistically, and

work collectively to develop and learn a new set of tools.

How can we work together to improve our workflows and

better scale design? What should be in a design system

standard, and what kinds of tools could be built if such a

standard existed? How will design systems and AI combine to

https://dbtr.co/susan-kare
https://dbtr.co/webstandards
https://dbtr.co/web-2-0
https://dbtr.co/web-2-0
https://dbtr.co/airbnb-AI-sketch
https://dbtr.co/airbnb-AI-sketch

215

create extremely customized interactions for end users? There

are many questions, and each answer points to a possible

future. What I love about design is that it enables each of us

to explore the ideas we feel may have the biggest impact, and

project our ideas outward and into the future. Innovation is

certain.

Further reading
Thinking in Symbols for Universal Design

How to Improve UX with Machine Lea[r]ning: A Wonderful

Lesson from Netflix and More

Algorithm-Driven Design: How Artificial Intelligence is

Changing Design

CreativeAI: On the Democratisation & Escalation of

Creativity — Chapter 01

Project Phoebe

https://dbtr.co/thinking-symbols
https://dbtr.co/machine-UX
https://dbtr.co/machine-UX
https://dbtr.co/algorithm-design
https://dbtr.co/algorithm-design
https://dbtr.co/creative-AI
https://dbtr.co/creative-AI
https://dbtr.co/Project-Phoebe

THE FUTURE OF DESIGN SYSTEMS

217

THE FUTURE OF DESIGN SYSTEMS

Chapter — 07

Appendix
More resources

219

There are a number of great resources available for diving

further into the world of design systems. The folks at

StyleGuides.io have not only assembled a comprehensive list

of example style guides and design systems, but have also

included relevant articles, books, podcasts , talks, and tools.

Alex Pate has assembled a list of Awesome design systems on

Github. And DesignGuidelines.co has a list of examples, as well

as readings and tools.

From these resources, we’ve curated a list of design systems

and style guides you may find helpful:

Airbnb

Atlassian

BBC, Gel

Buzzfeed, Solid

FutureLearn

Github, Primer

Google, Material

https://dbtr.co/styleguides
https://dbtr.co/styleguides-examples
https://dbtr.co/styleguides-articles
https://dbtr.co/styleguides-books
https://dbtr.co/styleguides-talks
https://dbtr.co/pate-systems
https://dbtr.co/designguidelines
https://dbtr.co/designguidelines-readings
https://dbtr.co/designguidelines-tools
https://dbtr.co/airbnb-build
https://dbtr.co/atlassian-design
https://dbtr.co/bbc-gel
https://dbtr.co/buzzfeed-solid
https://dbtr.co/futurelearn-pattern
https://dbtr.co/github-primer
https://dbtr.co/material-guidelines

INTRODUCING DESIGN SYSTEMS

IBM, Carbon

IBM, Design Language

Lonely Planet, Rizzo

MailChimp, Patterns

MailChimp, Voice & Tone

Microsoft, Fabric

Microsoft, Fluent Design

Nordnet

Salesforce, Lightning

SAP, Fiori

Shopify, Polaris

Ubuntu

WeWork, Plasma

Yelp

https://dbtr.co/carbon
https://dbtr.co/IBM-language
https://dbtr.co/lonely-planet
https://dbtr.co/mailchimp-patterns
https://dbtr.co/mailchimp-voice
https://dbtr.co/office-UI
https://dbtr.co/microsoft-apps
https://dbtr.co/nordnet-brand
https://dbtr.co/salesforce-lightning
https://dbtr.co/SAP-fiori
https://dbtr.co/shopify-polaris
https://dbtr.co/ubuntu-apps-overview
https://dbtr.co/github-plasma
https://dbtr.co/yelp-styleguide

221

INTRODUCING DESIGN SYSTEMS

	Introducing design systems
	The power of scale

	Designing your design system
	Step by step

	Building your design system
	A strong foundation

	Putting your design system into practice
	Better together

	Expanding your design system
	More than the sum of its parts

	The future of design systems
	To infinity and beyond

	Appendix
	More resources

