Diversity of Prokaryotic Life

Domains: Bacteria & Archaea

Prokaryotes

- Commonly refered to as "bacteria"
- > 5,000 species
- Prokaryotic cells

Domains of prokaryotes are divided into clades (not kingdoms or phyla) Clade = single common ancestor & all descendents

Phylogeny

<u>3 Domains of Life</u>

Based on nucleotide sequences of rRNA

- 2 Domains of prokaryotes
 - *Similarities* -> they share a common ancestor
 - *Differences* -> distinct 2 lineages of prokaryotes
- Eukarya is more closely related to Archaea than it is to Bacteria

- 3 clades (domains) indicate separate evolutionary histories = "Vertical evolution" (genetic change over time in lineages)
- Some gene transfer occurred between domains
 - = "Horizontal evolution" (new genes from another species)

<u>Prokaryotes were the earliest life forms</u> Dominated earth from 3.5-2 billion years ago Oxygen generating cyanobacteria evolved 2.7 bya

Fossil cyanobacteria

Living cyanobacteria

Oldest fossils: Stromatolites = "mats" of photosynthetic bacteria

Bacterial mats Layers of sediments & sticky prokaryotes

Similarities in cell structure

Bacteria

Archaea

Characteristics of Prokaryotic Cells

- Cell walls present
- 1-2 plasma membranes
- Circular chromosome
- Ribosomes in cytoplasm
- Plasmids

- Pili
- Capsule
- Some have flagella
- Some have internal membranes

Small cells (1-10 um)

- No nuclear membrane
- No organelles

©Addison Wesley Longman, Inc.

Morphology of Prokaryotes 4 cell shapes

Spherical: coccus (cocci)

Rods: bacillus (bacilli)

Comma: Vibrios

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dennis Kunkel Microscopy, Inc.

Spiral: Spirochaetes

Bacteria may live singly

Some bacteria live in groups

Independent cells weakly held together

Staphylococcus

Lactobacillus

Streptococcus

Heterocyst

Vegetative cells

Cyanobacteria filaments

- Long chains of cells
- Division of labor in some cells

Bacteria colonies

Reproduction in prokaryotes

No sexual reproduction

• no meiosis, gametes or gamete fusion

Binary fission - Asexual reproduction Produces 2 clone cells

- Mutation is main source of genetic variation
- Short generation time
- Rapid population growth
- Rapid evolution & adaptation

Lateral (horizontal) gene transfer

Genes received from phages, other cells & environment

cell divides:
 identical cells

Oxygen & prokaryotes

- Obligate aerobes need O₂
- **Obligate anaerobes** need environments <u>without</u> O_2
 - sulfur bacteria in mud
- Facultative anaerobes can live in either habitat
 - Ex: *E. coli*

Early bacteria were anaerobic - why?

Cyanobacteria & the Oxygen Revolution (2 bya) Iron oxides in sediments: evidence of free oxygen

- Oceans: Iron formations
- Land: Red beds

Basic metabolic requirements

All organisms need a constant supply of energy & nutrients

Energy source (to make ATP molecules)

Phototrophs - energy from sunlight **Chemotrophs** - energy from molecules in environment

Nutrients (Carbon source)

Carbon is needed to make organic molecules

- * Autotrophs use CO₂ (inorganic molecule)
- * Heterotrophs use organic molecules (glucose: C₆H₁₂O₆)

Metabolic Diversity

Allows prokaryotes to occur in all habitats in the biosphere

Nutritional Type Photoautotroph Cyanobacteria	Energy Source Sunlight	Carbon Source CO ₂
<u>Chemoautotroph</u> Sulfur bacteria (deep sea vents)	Inorganic molecules: Hydrogen sulfide (H Ammonia (NH ₃)	CO_2 H_2S)
<u>Photoheterotroph</u> Purple non-sulfur bacteria	Sunlight	Organic molecules

<u>Chemoheterotroph</u>

Most bacteria

Organic molecules

Organic molecules

- **Saprobes** = decomposers that absorb nutrients from dead organic matter
- **Parasites** = absorb nutrients from living hosts
- **Pathogens** = parasites that cause disease in host

LIFE: THE SCIENCE OF BIOLOGY, Seventh Edition, Figure 27.8 Two Domains: A Brief Overview © 2004 Sinauer Associates, Inc. and W. H. Freeman & Co.

Domain: Archaea

Ancient Bacteria

"Extremophiles"

Extreme habitats High temperatures High salinity Deep ocean

Others live in soils & ocean water

Archaea are anerobic and use inorganic molecules

Cellular differences in Bacteria & Archaea

Archaea

No peptidoglycan in cell walls

Bacteria

Peptidoglycan cell walls

Unique membrane lipids

"Regular" phospholipids

Histone proteins on DNA

Histones absent

Crenarchaeota "clade"

Thermoacidophilic Archaea

Thermophilic = Heat loving Extreme heat (up to 80°C)

Acidophilic = Acid loving pH: 0 - 3

Habitats:

• Hot, acidic water of thermal sulfur springs

• Deep sea sulfide hydrothermal vents ("black smokers") Base of food

Base of food chain for vent community

Euryarchaeota "clade"

Methanogens

• Methane producers

 $4\mathbf{H}_2 + \mathbf{CO}_2 = \mathbf{CH}_4 + 2\mathbf{H}_2\mathbf{O}$

- Use hydrogen sulfide as an energy source
- Habitats: Anaerobic aquatic sediments Sewage treatment facilities
- Lifestyles: Free-living

Symbiotic mutualists in animal guts

- breakdown food for host & provide nutrients
 - breakdown cellulose
- bacteria get source of energy (H_2S)

Euryarchaeota "clade"

Halophiles: Salt loving archaea

• Habitats: Saturated brine

(10x salt conc. of ocean) Great Salt Lake Desert salt pan crusts

- Carotenoid pigments give cells a pink color
- Thrive in 15-20% salinity
- Some live in alkaline lakes with a high pH (pH = 11)

Salt evaporation ponds in San Francisco Bay

Domain: Bacteria

- Far more species than Archaea
- The most ancient bacteria groups are thermophiles
 - evidence that life evolved
 - in hot environments
- Over a dozen clades
- Identified by shape, staining & metabolism

Escherichia coli

Ecological Importance of Bacteria

- Cyanobacteria produce oxygen
- Nutrient cycling
 - Role as decomposers
 - Nitrogen fixation: N₂ -> NH₃
 - Only bacteria can fix nitrogen
 - Contributes to soil & water fertility
 - Autotrophs can't use nitrogen gas
- Pathogens: +/-
- Commensals: + / 0
- Mutualists: + / +

Cyanobacteria

formerly called "blue-green algae"

Photoautotrophs

- only prokaryotes with oxygen generating photosynthesis
- thylakoid membranes have chlorophyll a
- Lifestyles
 - Free-living: Solitary & Colonial
 - Aquatic habitats: marine & freshwater
 - Moist soil surfaces
 - Symbiotic mutualist
 - With some plants, animals & fungi

• Some fix nitrogen

– Heterocysts: specialized cells for N_2 fixation

Importance of Cyanobacteria

- Oxygen production
- Nitrogen fixation contributes to water & soil fertility
- Food in aquatic ecosystems
 - For protists & animals
 - For humans: Spirulina is 70% protein
- Blooms (large populations)
 - odor & poor water quality for drinking

Identifying heterotrophic bacteria by the Gram stain Detects differences in cell wall composition

Gram (+) bacteria

- 1 membrane
- *Thick peptidoglycans* external to cell membrane

<u>Gram (-) bacteria</u>

- 2 membranes
- Cell wall has a *thin peptidoglycan layer* covered by an outer membrane

Gram (-) pathogenic bacteria are more harmful than Gram (+) ones & more resistant to antibiotics; outer membrane molecules can also be toxic

Proteobacteria

"Purple" bacteria

- Largest & most diverse group (gram negative)
- All modes of nutrition (but no oxygen production)
- Lifestyles
 - Free-living
 - Commensals
 - Symbiotic mutualist
 - *Rhizobium*: Nitrogen fixing in plants (also free living)
 - *E. coli*: Gut symbiont in animals

-Parasites

- Helicobacter pylori: causes ulcers
- Agrobacterium tumefaciens: causes crown gall tumor in plants

Firmicutes

- All gram (+) bacteria & a few gram (-) ones
- Heterotrophs
- Lifestyles: Free-living in soil

Parasites (pathogens)

Selected types:

1. Actinomycetes: colonies of branched chains of cells

- many produce antibiotics
- cause tuberculosis & leprosy
- **2. Mycoplasmas:** smallest cells No cell walls; small genomes

3. Various genera: Bacillus, Streptococcus, Staphylococcus

Firmicutes

Endospores: an adaptation for dormancy

- Thick protective coat surrounds cell contents
 inside of existing cell
- Able to survive extremely harsh conditions
- Lethal temp: 250°F
 - Autoclave use for sterilization
 - High heat needed to can foods

Spirochetes

- Gram negative
- Chemoheterotrophs
- Motile
 - -- Axial filaments along length of cell
 - Allows a rolling motion
- Lifestyles
 - Free-living in mud or water
 - Parasites: Syphilis & Lyme disease

Figure 14.14 Lyme disease, a bacterial disease transmitted by ticks.

(b) "Bull's-eye" rash

Lyme disease spirochete is carried by ticks Leads to severe arthritis, heart disease & neurological disorders

Spirochete that causes syphilis

Chlamydias

- Gram negative cocci
- Extremely small
- Chemoheterotrophs
- All parasites
 - -live inside of animal cells

Chlamydia trachomatis the most common cause of blindness in the world (trachoma) & also is the most common STD in the US