

Extracellular Environment

- The extracellular environment includes everything located outside the cells.
- Cells receive nourishment from and release wastes into the extracellular environment.
- Cells communicate with each other by secreting chemical regulators into the extracellular environment.

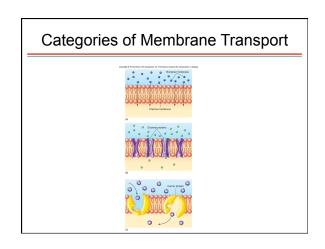
Body Fluids

- 67% of our water is within cells in the intracellular compartment.
- 33% is in the extracellular compartment. Of this:
 - 20% is in blood plasma.
 - 80% makes up what is called tissue fluid, or interstitial fluid.

Extracellular Matrix

- Contains protein fibers and a gel-like ground substance
 - Protein fibers provide structural support.
 - Gel is composed of glycoproteins (composed of proteins and sugars) and proteoglycans (composed of polysaccharides).
 - Integrins are glycoproteins that extend from the cell cytoskeleton and bind to the extracellular matrix.

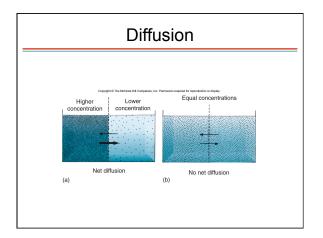
Cell Transport

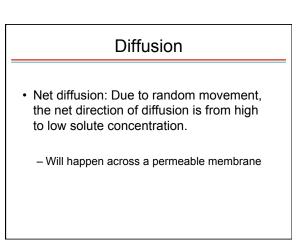

- The plasma membrane is selectively permeable, meaning that it allows some molecules to cross but not others.
 - Generally not permeable to proteins, nucleic acids, or other large molecules
 - Generally permeable to ions, nutrients, and wastes

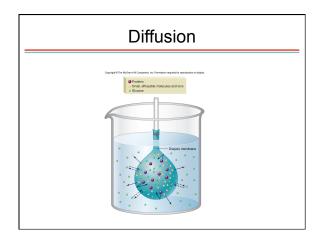
Categories of Membrane Transport

- 1. Carrier-mediated
 - a. Facilitated diffusion
 - b. Active transport
- 2. Noncarrier-mediated
 - a. Simple diffusion of lipid-soluble molecules
 - b. Simple diffusion of water = osmosis
 - c. Simple diffusion of ions through nonspecific channels

Categories of Membrane Transport

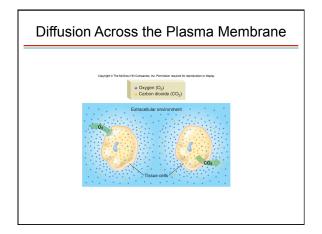

- Passive transport: Molecules move from higher to lower concentration without using energy.
- Active transport: Molecules move from lower to higher concentration using ATP.

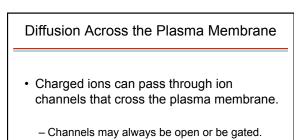


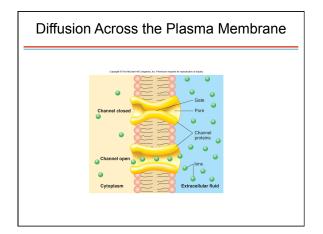

II. Diffusion and Osmosis

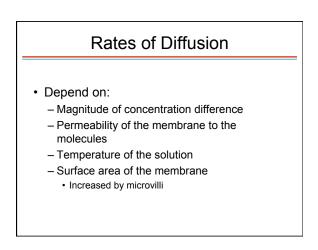
Diffusion

- Solution: consists of a solvent (water) and a solute (molecules dissolved in water)
 - Molecules in a solution are in a constant state of motion.
 - If there is a concentration difference between two regions, random motion will establish equilibrium via diffusion.

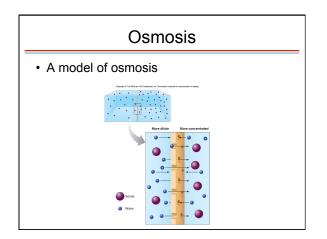


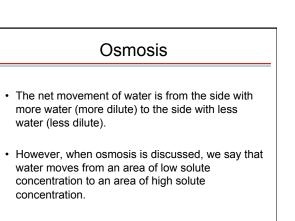


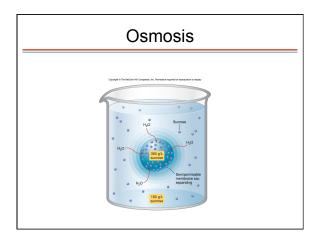


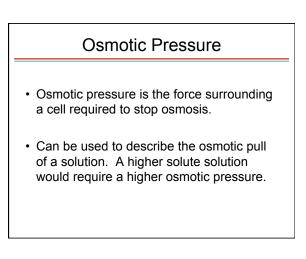


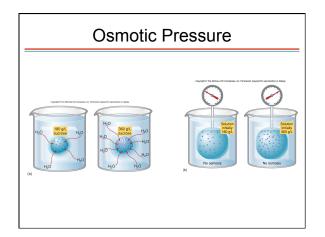
- Nonpolar (or uncharged) lipid-soluble molecules pass easily.
 - Oxygen, carbon dioxide, and steroid hormones
- Gas exchange: net diffusion of O₂ into cells and CO₂ out of cells due to concentration
 - Opposite in lungs



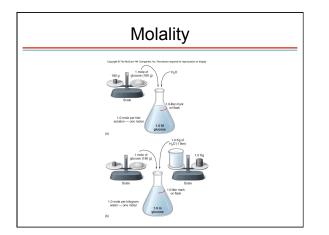


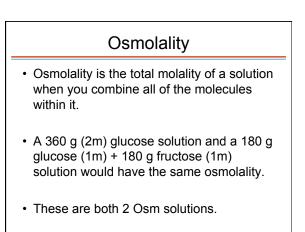

- Because water molecules do not carry a charge, they can pass through the plasma membrane slowly.
- Because this is the diffusion of solute instead of solvent, it is unique.
 - Aided by channels in membrane called aquaporins in some tissues

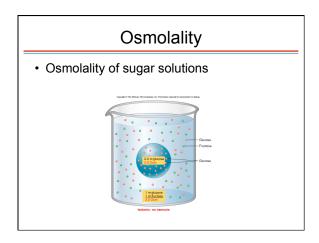

Requirements of Osmosis

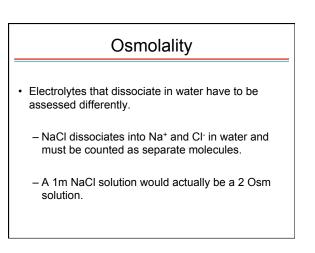

- 1. There must be a solute concentration difference on either side of a membrane permeable to water.
- 2. The membrane must be impermeable to the solute, or the concentration difference will not be maintained.
 - Solutes that cannot cross and permit osmosis are called osmotically active.

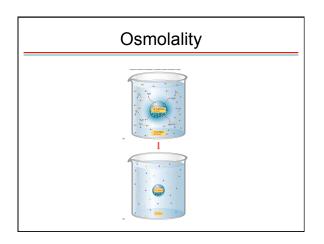
Moles

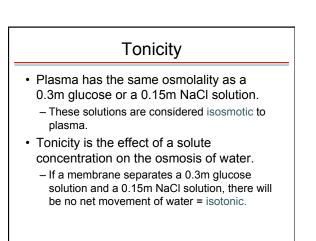

- A mole of a compound can be measured as its molecular weight in grams.
- The number of atoms in 1 mole is always the same no matter the compound:
 6.02 X 10²³ molecules
- You can make molar solutions (1M) or molal solutions (1m).

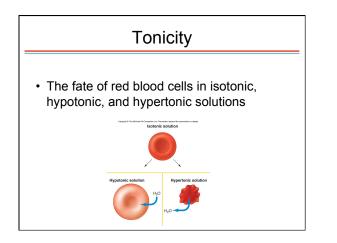

Molarity


- Glucose has a molecular weight of 180. To make a 1 molar solution of glucose, dissolve 180 g glucose in water to make 1 L solution.
- NaCl has a molecular weight of 58.5. To make a 1 molar solution of NaCl, dissolve 58.5 g NaCl in water to make 1 L solution.
- Not useful for a discussion of osmosis, since the solute concentration is different depending on the solute. More water is used to make the 1 molar solution of NaCI.


Molality

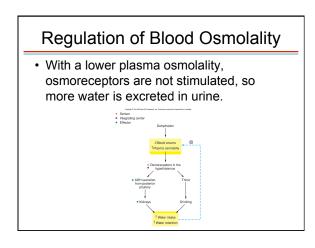

- 1 molal solutions take the molecular weight in grams dissolved in exactly 1 L water.
- The amount of water never changes, so you can compare solute concentrations to predict the direction of osmosis.





Tonicity

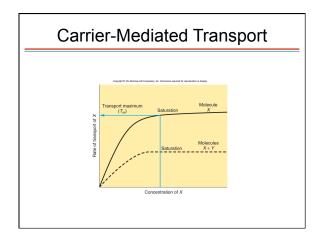
- Tonicity takes into account the permeability of the membrane to the solutes. If the solutes can cross the membrane, the tonicity will change.
 - If you place RBCs in a 0.3m solution of urea, the tonicity will not be isotonic. Urea can cross into the RBCs and draw water with it.
 - These cells will eventually burst.


Tonicity

- Solutions with a lower solute concentration than the cell are hypoosmotic and hypotonic.
 - Will pull water into the cell = lysis
- Solutions with a higher solute concentration than the cell are hyper-osmotic and hypertonic.
 - Will pull water out of the cell = crenation

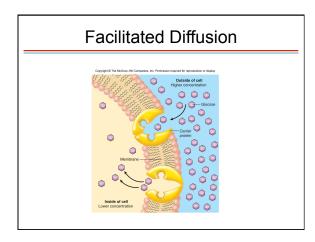
Regulation of Blood Osmolality

- Constant osmolality must be maintained, or neurons will be damaged.
- Osmoreceptors in the hypothalamus detect increases in osmolality (due to dehydration). This triggers:
 - Thirst
 - Decreased excretion of water in urine

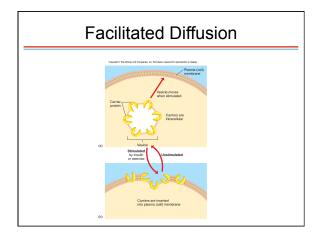


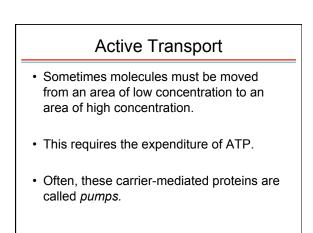
Carrier-Mediated Transport

- Molecules that are large or polar cannot diffuse across the membrane.
- Carrier proteins within the plasma membrane move these molecules across.
- These proteins are specific to a given molecule.

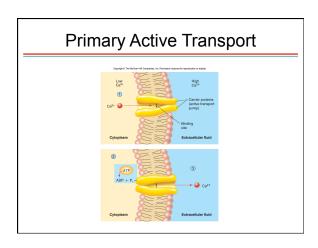

Carrier-Mediated Transport

- Some proteins can transport more than one molecule, but then there is a competition effect.
- Transport rates increase with increased molecule concentration until saturation is met = transport maximum (T_m).


Facilitated Diffusion

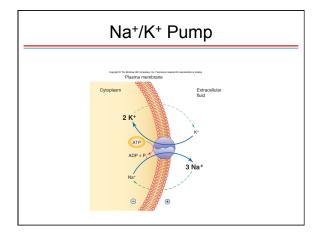

- Powered by the random movement of molecules--no ATP used
- Net movement from high to low concentration
- · Requires specific carrier-mediated proteins

Facilitated Diffusion


- Transport proteins may always exist in the plasma membrane or be inserted when needed.
 - Muscle cells do this during exercise to transport glucose.

Primary Active Transport

- Occurs when the hydrolysis of ATP is directly responsible for the protein function. The transport protein is also an ATPase enzyme.
- Pump is activated by phosphorylation using a $\rm P_i$ from ATP.

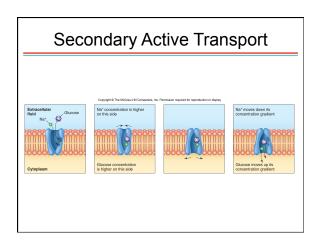


The Ca²⁺ Pump

- Located on all cells and in the endoplasmic reticulum of muscle cells
- Removes Ca²⁺ from the cytoplasm by pumping it into the extracellular space
- Creates a strong concentration gradient for rapid movement of Ca²⁺ back into the cell
- Aids in release of neurotransmitter in neurons and in muscle contraction

Na⁺/K⁺ Pump

- · Found in all body cells
- ATPase enzyme that pumps 3 Na⁺ out of the cell and 2 K⁺ into the cell
- Serves three functions:
 - Provides energy for coupled transport of other molecules
 - Produces electrochemical impulses in neuron and muscle cells
 - Maintains osmolality

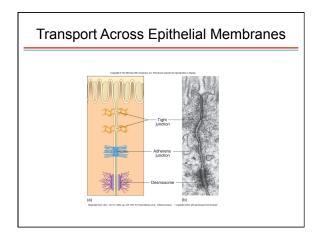


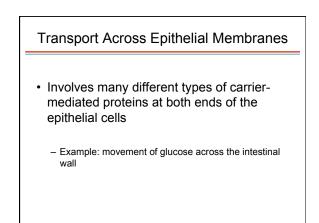
Secondary Active Transport

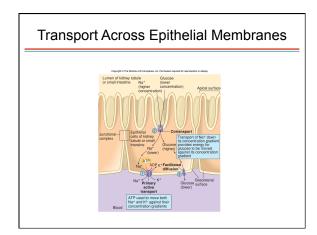
- · Also called coupled transport
- The energy needed to move molecules across their concentration gradient is acquired by moving sodium back into the cell.
- Since the sodium was originally pumped out of the cell using ATP, this is considered active transport.

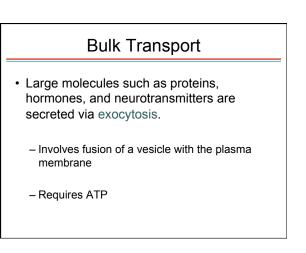
Secondary Active Transport

- Cotransport: The other molecule is moved with sodium.
 - Common way to transport glucose
- Countertransport: The other molecule is moved in the opposite direction from sodium.

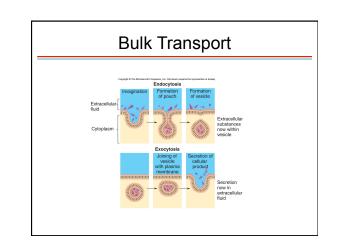



Transport Across Epithelial Membranes


- Involves transcellular transport: movement of molecules through the cytoplasm of the epithelial cells
- May also involve paracellular transport: movement across the tiny gaps between cells

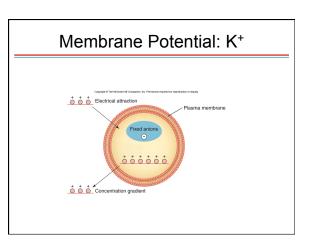

Transport Across Epithelial Membranes

- Paracellular transport is limited by junctional complexes:
 - Tight junctions: do not allow easy diffusion
 - Adherens junctions
 - Desmosomes



Bulk Transport

- Movement of large molecules such as cholesterol into the cell requires endocytosis.
 - Usually a transport protein interacts with plasma membrane proteins to trigger endocytosis.


IV. The Membrane Potential

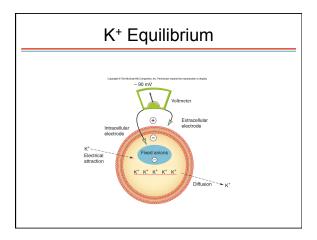
Membrane Potential

- There is a difference in charge on each side of the plasma membrane due to:
 - Permeability of the membrane
 - Action of Na⁺/K⁺ pumps
 - Negatively charged molecules inside the cell
- The inside of the cell is negative compared to the outside.

Membrane Potential: K⁺

- K⁺ accumulates at high concentrations in the cell because:
 - The Na⁺/K⁺ pumps actively bring in K⁺.
 - The membrane is very permeable to K⁺.
 Negative anions inside the cell attract
 - cations outside the cell. – Limited by strong concentration gradient.

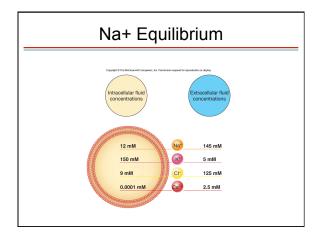
Potential Difference

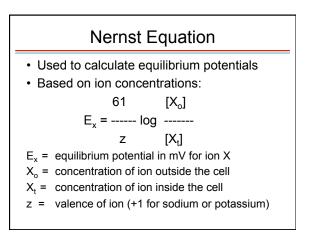

- Even with all the K⁺ inside the cell, the negative molecules inside and all of the sodium outside make the cell more negative inside compared to outside.
 - This difference can be measured as a voltage.
 - Because the membrane is so permeable to K⁺, this difference is often maintained by K⁺.


K⁺ Equilibrium

- Addressing just K⁺, the electrical attraction would pull K⁺ into the cell until it reaches a point where the concentration gradient drawing K⁺ out matches this pull.
 - K^{*} would reach an equilibrium, with more K^{*} inside than outside.
 - Normal cells have 150mM K $^{\!+}$ inside and 5mN K $^{\!+}$ outside.

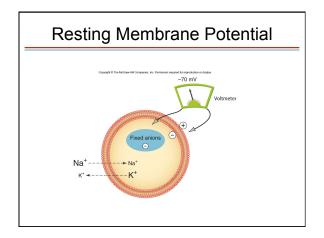
K⁺ Equilibrium


- The resulting potential difference measured in voltage would be the equilibrium potential for K⁺; measured at -90mV.
 - This means the inside has a voltage 90mV lower than the outside.
 - This is the voltage needed to maintain 150 mM $K^{\scriptscriptstyle +}$ inside and 5mM $K^{\scriptscriptstyle +}$ outside.



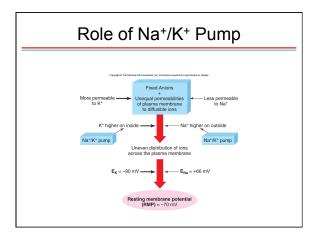
Na+ Equilibrium

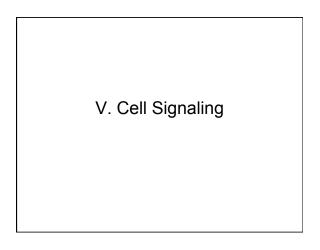
- The equilibrium potential for sodium is +66mV.
- The membrane is less permeable to Na⁺, so the actual membrane potential is closer to that of the more permeable K⁺.



Resting Membrane Potential

- Membrane potential of a cell not producing any impulses
 - Because the membrane is most permeable to K^{+} , it has the greatest influence.
 - A change in the permeability of the membrane for any ion will change the resting potential.
 - A change in the concentration of any ion inside or outside the cell will change the resting potential.
 - Key to how neurons work


Resting Membrane Potential


- In most cells, the resting potential is between -65mV and -85mV.
 - Neurons are usually at –70mV.
 - Close to K⁺ equilibrium potential
- When a neuron sends an impulse, it changes the permeability of Na⁺, driving the membrane potential closer to the equilibrium potential for Na⁺.

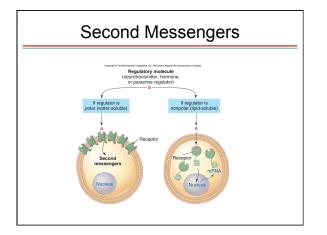
Role of Na⁺/K⁺ Pump

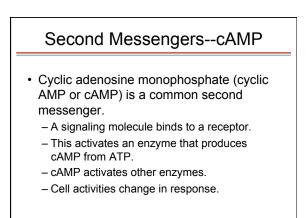
- Acts to counter K⁺ leaking out
- Because it transports 2 K⁺ in for every 3 Na⁺ out, it maintains voltage difference.
- Keeps both the resting potential and the concentration differences stable

Cell Signaling

- Cells communicate using chemical signals.
- Types:
 - 1. Gap junctions: allow adjacent cells to pass ions and regulatory molecules through a channel between the cells
 - 2. Paracrine signaling: Cells within an organ secrete molecules that diffuse across the extracellular space to nearby cells.
 - Often called local signaling

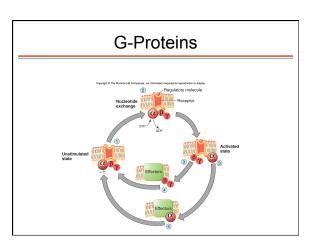
Cell Signaling


- Cells communicate using chemical signals.
- Types:
 - 3. Synaptic signaling: involves neurons secreting neurotransmitters across a synapse to target cells
 - Endocrine signaling: involves glands that secrete hormones into the bloodstream; these can reach multiple target cells


Receptor Proteins

- A target cell receives a signal because it has receptor proteins specific to it on the plasma membrane or inside the cell.
 - Nonpolar signal molecules such as steroid hormones can penetrate the plasma membrane and interact with receptors inside the cell.

Second Messengers


- Polar or large signal molecules bind to receptors on the cell surface.
- Other proteins pass the information to the inside of the cell to effect change.

G-Proteins

- Receptor proteins that bind to a signal and enzyme proteins that produce a second messenger are rarely together. They require something to shuttle between them.
 - G-proteins are made up of 3 subunits.
 - One subunit dissociates when a signal molecule binds to the receptor and travels to the enzyme.

