

Activation Energy

- The energy required for the reactants to engage in a reaction
- Most molecules lack the activation energy for a reaction.
 - Adding heat increases the likelihood of a reaction occurring. This increases the rate of reactions.
 - Heat has some negative effects on cells. Catalysts help the reaction occur at lower temperatures.

Mechanisms of Enzyme Activity

- The function of an enzyme is dictated by its structure.
- Each enzyme has a characteristic 3D shape or conformation, with pockets that serve as active sites in the enzyme.
- The reactants are called substrates, and they fit into the active site like a key to a lock.

<text>

Mechanisms of Enzyme Activity

- New bonds are formed between substrates as they are brought close together by the enzyme.
 - Bonding of enzyme to substrates forms a temporary enzyme-substrate complex.
 - This breaks to yield the products of the reaction.
 - The amount of enzyme in a sample of fluid can be measured based on the rate of product synthesis.

Naming Enzymes

- The first enzymes discovered were given arbitrary names. An international committee later decided to end all enzymes with the suffix –ase.
- They also decided to make the first part of the name apply to the function of the enzyme.
 - Phosphatases remove phosphate groups.
 - Synthetases catalyze dehydration synthesis.

Isoenzymes

- Because names are given to enzymes based on function, an enzyme that does the same job in two different organs has the same name.
- However, the molecules may be slightly different (in areas outside the active site) and are called isoenzymes.

Enzyme Activity

- Measured by the rate at which substrate is converted to product
- Influenced by:
 - Temperature
 - pH
 - Concentration of cofactors and coenzymes
 - Concentration of enzyme and substrate
 - Possible stimulatory or inhibitory effects of products on enzyme function

Effects of Temperature

• An increase in temperature will increase the rate of reactions until the temperature reaches a few degrees above body temperature. At this point, the enzyme is denatured.

Cofactors

- Cofactors help form the active site through a conformational change of the enzyme or help in enzyme-substrate binding.
- Cofactors are metal ions (Ca²⁺, Mg²⁺, Mn²⁺, Cu²⁺, Zn²⁺).

Enzyme Activation

- Enzymes are often produced in an inactive form and activated when needed (pepsinogen → pepsin).
- It often requires additional enzymes to phosphorylate or dephosphorylate the molecule.
- Enzyme inhibition can be controlled through turnover, by which enzymes are degraded.

Substrate Concentrations

 As the substrate concentration increases, so will the rate of the reaction until the enzyme becomes saturated = every enzyme in the solution is busy.

End Product Inhibition Branch points are often inhibited by a form of negative feedback in which one of the final products inhibits the branch point enzyme. In the process called allosteric inhibition, the product binds to the enzyme at a location away from the active site and changes the 3D conformation of the enzyme. Keeps the final product from accumulating

Inborn Errors of Metabolism

- Occur when there is a mutation in a single gene that codes for an enzyme in a metabolic pathway
 - Products to be formed after this enzyme in the chain are not formed.
 - Diseases occur due to loss of end product or accumulation of intermediary products (those before the bad enzyme) or alternative products in a branch.

Examples of Diseases Caused by Inborn Errors of Metabolism			
able 4.4 Examp	Copyright © The McGraw-Hill Com	panies, Inc. Permission required for reproduction of	Acide
arbohydrates, and Lipids			
Metabolic Defect	Disease	Abnormality	Clinical Result
Amino acid metabolism	Phenylketonuria (PKU)	Increase in phenylpyruvic acid	Mental retardation, epilepsy
	Albinism	Lack of melanin	Susceptibility to skin cancer
	Maple-syrup disease	Increase in leucine, isoleucine, and valine	Degeneration of brain, early death
	Homocystinuria	Accumulation of homocystine	Mental retardation, eye problems
Carbohydrate metabolism	Lactose intolerance	Lactose not utilized	Diarrhea
	Glucose 6-phosphatase deficiency (Gierke's disease)	Accumulation of glycogen in liver	Liver enlargement, hypoglycemia
	Glycogen phosphorylase deficiency	Accumulation of glycogen in muscle	Muscle fatigue and pain
Lipid metabolism	Gaucher's disease	Lipid accumulation (glucocerebroside)	Liver and spleen enlargement, brain degeneration
	Tay-Sachs disease	Lipid accumulation (ganglioside $\mathbf{G}_{_{M2}})$	Brain degeneration, death by age five
	Hypercholestremia	High blood cholesterol	Atherosclerosis of coronary and large

Bioenergetics

- · The flow of energy in living systems
- · Obeys the laws of thermodynamics:
- 1. First Law of Thermodynamics: Energy can not be destroyed or created, only transformed.

Second Law of Thermodynamics

- Energy is lost with each transformation as heat, so the available "organized" energy (free energy) decreases.
 - Entropy = degree of disorganization
 - Entropy increases at each step of energy transformation.
- This law relates to endergonic and exergonic reactions.

Endergonic Reactions

- Chemical reactions that require an input of energy. Products contain more free energy than the reactants.
 - Occur in reactions where the reactants are at a greater state of entropy and the products are at a lesser state of entropy
 - Plants need the energy from light to turn carbon dioxide and water into glucose.

Exergonic Reactions

- Chemical reactions that produce energy. Products will have less free energy than the reactants.
 - Breaking glucose down into carbon dioxide and water produces energy.
 - Energy is used to make ATP for use in other endergonic reactions in the body.

Calories

- The amount of energy in a molecule can be measured in calories.
- One calorie = amount of heat required to raise the temperature of 1 cubic centimeter of water 1 degree Celsius.
- Calories in food are actually reported in kilocalories (= 1,000 calories).

Coupled Reactions

- Energy from the environment (food) is broken down in exergonic reactions to drive the endergonic reactions in our bodies.
- Energy must be stored in a usable form:
 - The production of ATP is actually an endergonic reaction that is coupled to an exergonic reaction to drive it.
 - The ATP molecule stores energy in its bonds to be used elsewhere.
 - ATP is called the universal energy carrier.

Oxidation-Reduction

- Usually, free electrons are not passed along, but hydrogen atoms carrying the electrons are.
 - A molecule that loses hydrogen is oxidized.
 - A molecule that gains hydrogen is reduced.

NAD and FAD

- NAD = nicotinamide adenine dinucleotide – From the vitamin niacin (B₃)
- FAD = flavin adenine dinucleotide – From the vitamin riboflavin (B₂)
- NAD and FAD are coenzymes that play an important role in hydrogen transfer.

NAD and FAD

- Each FAD can accept 2 electrons and bind to 2 protons, thus reduced FAD = FADH₂.
- Each NAD can accept 2 electrons and bind to 1 proton, thus reduced NAD = NADH + H⁺.

