

- Transport
- Enzymatic control of cell processes
- Receptors for hormones and other molecules
- "Self" markers for the immune system

Phagocytosis

- Some white blood cells can perform amoeboid movement by extending pseudopods to pull the cell forward.
- Pseudopods engulf bacteria, dead cells, or other organic materials and then fuse together to form a food vacuole.
- The food vacuole fuses with a lysosome, and the bacterium is digested.

Endocytosis

- Another strategy for bringing large materials into the cell
- The plasma membrane furrows inward rather than extending outward. A small part of the membrane surrounding the substance pinches off and is brought in as a vesicle.
 - Pinocytosis: nonspecific
 - Receptor-mediated endocytosis: specific

Exocytosis

- Large cellular products (proteins) are moved out of the cell.
 - The Golgi apparatus packages proteins into vesicles that fuse to the plasma membrane, and the contents spill out of the cell.

· Found on almost every cell in the body

Flagellum A single whiplike structure that can propel a cell forward Composed of microtubules Sperm is the only cell in the human body

with a flagellum.

- Folds in the plasma membrane that increase the surface area for rapid diffusion
 - Examples: intestines and kidney tubules

II. Cytoplasm and Organelles

• Material within a cell - Includes organelles, a fluid called cytosol, and an organized system of microtubules and microfilaments called the cytoskeleton

Cytoskeletal Proteins

- Proteins of the cytoskeleton are not immobile.
- They organize the intracellular environment and allow movement of muscle cells and phagocytic cells.
- They form the spindle apparatus that pulls chromosomes apart in mitosis.
- They also serve as a "railway" system for vesicles and organelles to move along.

Lysosomes

- · Organelles filled with digestive enzymes
 - Fuse with food vacuoles after an immune cell engulfs a bacterium or dead cell
 - Primary lysosome: only contains digestive enzymes
 - Secondary lysosome: contains the partially digested contents of the food vacuole or wornout organelles
 - Residual body: a lysosome filled with waste, which can be expelled through exocytosis

Lysosomes

- Besides digesting bacteria, lysosomes are responsible for:
 - Autophagy: process of digesting worn-out organelles and proteins in the cell
 - Apoptosis: programmed cell death. The lysosome spills its contents, killing the cell.

Peroxisomes

- Contain enzymes specific to certain oxidative reactions
 - Found in most cells but most numerous in the liver; often oxidize toxic molecules (such as alcohol)
 - Enzymes used to remove hydrogen from a molecule and transfer it to O₂, forming hydrogen peroxide
 - Also contain the enzyme catalase, which converts hydrogen peroxide into water and O₂

Mitochondria

- · Sites of energy production
- Have an inner membrane and an outer membrane separated by an intermembranous space
- Inner membrane is folded into cristae

Mitochondria

- Most cells have mitochondria, and there can be thousands of mitochondria in a single cell.
- Mitochondria can migrate around the cell and can make copies of themselves.

- Have their own DNA, all derived from mom

Ribosomes

- · Protein factories of the cell
 - Messenger RNA takes genetic information to the ribosome so a protein can be assembled.
 - Very small
 - Found free in the cytoplasm or associated with the rough ER
 - Broken into 2 subunits composed of proteins and ribosomal RNA while not in use

Endoplasmic Reticulum

- Rough ER is also called granular ER. – Has ribosomes
 - Functions in protein modification
- Smooth ER is also called agranular ER. – Has many functions, depending on the cell

Golgi Complex (Apparatus)

- · Consists of stacks of flattened sacs
 - One side receives proteins from the ER.
 - These are packaged in vesicles and bud off to fuse with the plasma membrane for exocytosis.

III. Cell Nucleus and Gene Expression

Cell Nucleus

- · Most cells have one nucleus.
 - Muscle cells have hundreds; RBCs have none.
- The nucleus is enclosed by the nuclear envelope made of two membranes:
 - Outer membrane continuous with rough ER
 - Inner membrane often fused to outer by nuclear pore complexes, which allow small molecules and RNA to move into/out of the cell

Nucleoli

- The nucleus also has one or more darker regions not surrounded by a membrane; these are called *nucleoli*.
- The nucleoli contain the DNA that codes for the production of ribosomal RNA.

Genome and Proteome

- The genome is all the genes in a particular individual or all the genes of a particular species.
 - Researchers believe humans have ~25,000 genes.
- The proteome is all the proteins that are produced from the genome.
 - More than 150,000 proteins are produced in the human body.

Genome and Proteome

- How can a gene code for more than one protein?
 - mRNA is altered after transcription.
 - Proteins are made of many polypeptide chains.
 - Protein modification occurs by:
 - Adding a lipid or carbohydrate
 - Adding a phosphate group
 - Cutting into small units

Chromatin

- DNA in the nucleus is packaged with proteins called histones to form chromatin.
 - Euchromatin: active in transcription, looser.
 Changes in histones allow molecules access to the DNA during gene expression.
 - Heterochromatin: inactive regions, highly condensed. Much of the DNA is inactive.

IV. Protein Synthesis and Excretion

Protein Synthesis

- Also called translation
- mRNA attaches to a string of ribosomes to form a polyribosome.

	Codons			
Table 3.2	Copyor O The McOre-III Corpores. Nr. Permissio regated for reproduction of diplay ble 3.2 Selected DNA Base Triplets an RNA Codons*			
DNA Triplet	RNA Codon	Amino Acid		
TAC	AUG	"Start" (Methionine)		
ATC	UAG	"Stop"		
AAA	UUU	Phenylalanine		
AGG	UCC	Serine		
ACA	UGU	Cysteine		
GGG	CCC	Proline		
GAA	CUU	Leucine		
GCT	CGA	Arginine		
πт	AAA	Lysine		
TGC	ACG	Threonine		
CCG	GGC	Glycine		
CTC	GAG	Glutamic acid		

Transfer RNA (tRNA)

- Bent into a cloverleaf shape
 - One end has the anticodon, which is three nucleotides that will be complementary to the proper codon.
 - The other end has the appropriate amino acid.

Formation of a Polypeptide

- The mRNA moves through the ribosome, with the proper tRNA attaching at each codon.
- Amino acids attached to the tRNAs form peptide bonds to each other and disassociate from the tRNA.
- tRNAs disassociate from the mRNA as they lose their amino acids.
- This continues until a stop codon is encountered and the whole complex disassociates.

Rough ER Revisited

- Newly formed proteins destined to leave the cell enter the rough ER.
 - The first ~30 amino acids are hydrophobic and are attracted to the membrane of the rough ER.

Rough ER Revisited

- The hydrophobic leader sequence is removed. Other portions may be removed as well.
 - In the conversion of preproinsulin to insulin, the middle region is removed and the ends bonded together.

Golgi Complex Revisited

- Secretory proteins are next sent to the Golgi complex.
 - Proteins may be further modified, including the production of glycoproteins.
 - Proteins are separated according to destination.
 - Proteins are packaged and shipped in vesicles to their destinations.

Protein Degradation

- Regulatory proteins are rapidly degraded, making their effects short-lived. This allows for greater control of cell functions.
 - Proteases in the lysosome digest proteins.
 - They are tagged by a molecule called ubiquitin, which marks them for degradation by a proteasome.

V. DNA Synthesis and Cell Division

DNA Replication

- Before cell division, each DNA molecule must replicate itself so that one of each copy can be distributed to the two new cells.
- · Involves many enzymes:
 - Helicases break hydrogen bonds between the DNA strands. This creates a fork in the double-stranded molecule where nucleotides can be added to both strands.

DNA Replication

- · Involves many enzymes:
 - DNA polymerase attaches complementary nucleotides to the exposed strand.
 - Two new molecules are being made from the original one, each with half old and half new DNA.
 - This is called semiconservative replication.

The Cell Cycle

- · Divided into interphase and mitosis
- · Interphase is divided into:
 - G₁
 - S
 - G₂
- Mitosis is divided into:
 - Prophase
 - Metaphase
 - AnaphaseTelophase

Interphase

- <u>Nondividing cell</u>. Some cells never divide so are always in interphase.
 - Lots of RNA synthesis occurring
 - G_1 phase: The cell is performing the functions characteristic of cells in that tissue.
 - Cyclin D moves the cell through G₁.
 - Overactivity of the gene for cyclin D has been implicated in some cancers.
 - p53 is a transcription factor that can stall a gene at the G1/S checkpoint

Cell Death Necrosis: Cell dies pathologically due to deprivation of blood supply.

- <u>Apoptosis</u>: Programmed cell death is performed by enzymes called caspases.
 - <u>Extrinsic</u>: "Death ligands" attach to the cell and mark it for destruction.
 - <u>Intrinsic</u>: Intercellular signals trigger death due to DNA damage, cancer, infection, or oxidative stress.

Mitosis

- <u>Anaphase</u>: Centromeres split as the spindle fibers shorten and pull chromatids to opposite sides.
- <u>Telophase</u>: Cytoplasm is divided and cells separate.

Centrosome

 Is a structure located near the nucleus of a nondividing cell. At the center are two <u>centrioles</u>. They replicate in interphase and move away from each other in prophase. Spindle fibers form.

Telomeres

- Cells can only divide for so long. Loss of the ability to divide may be due to the loss of regions at the end of the DNA called *telomeres*.
 - Each time DNA is replicated, a little more telomere is lost.
 - Cells that can divide indefinitely, such as those in bone marrow, have an enzyme called telomerase that replicates the telomere.

Hypertrophy and Hyperplasia

- Hyperplasia: growth due to an increase in the number of cells
 - Responsible for the growth of most body regions
- Hypertrophy: growth due to an increase in cell size
 - Responsible for increase in skeletal muscle size

Homologous Chromosomes

- Humans have 23 pairs of chromosomes, one set from each parent.
- Each pair is called homologous chromosomes, and they have the same genes on them (but not identical DNA).

Comparison C

Meiosis

- Process by which two cell division steps produce gametes (ova and sperm)
 - Only occurs in the gonads (ovaries and testes)

Meiosis I

- <u>Prophase I</u>: Homologous chromosomes pair up.
 - Parts are often swapped in a process called crossover.
- <u>Metaphase I</u>: Homologous chromosomes line up in the center of the cell.
 - Cells line up at random; maternal and paternal chromosomes are shuffled.
- Crossover and shuffling result in genetic diversity.

Meiosis II

- Meiosis II proceeds like mitosis with phases prophase II through telophase II.
- Sister chromatids line up in the center of the cell. Centromeres are broken and pulled to opposite poles.
- Results in 4 cells with 23 chromosomes each.

Meiosis			
Converte The Minimum Hill Companies, Inc. Permission required for reproduction or depain Table 3.3 Stages of Melosis			
Stage	Events		
First Melotic Divisi			
Prophase I	Chromosomes appear double-stranded.		
	Each strand, called a chromatid, contains duplicate DNA joined together by a structure known as a centromere.		
	Homologous chromosomes pair up side by side.		
Metaphase I	Homologous chromosome pairs line up at equator.		
	Spindle apparatus is complete.		
Anaphase I	Homologous chromosomes separate: the two members of a homologous pair move to opposite poles.		
Telophase I	Cytoplasm divides to produce two haploid cells.		
Second Meiotic Di	Maion		
Prophase II	Chromosomes appear, each containing two chromatids.		
Metaphase II	Chromosomes line up single file along equator as spindle formation is completed.		
Anaphase II	Centromeres split and chromatids move to opposite poles.		
Telophase II	Cytoplasm divides to produce two haploid cells from each of the haploid cells formed at telophase I.		