

Atoms

- · An atom is the smallest unit of an element. It has:
 - A nucleus with positively charged protons and uncharged neutrons
 - Orbiting electrons with negative charges
 - An atomic mass equal to the number of protons plus the number of neutrons
 - An atomic number equal to the number of protons

able 2.1	Atoms			iompanies, Inc. Permiss in Organic N		,,	
Atom	Symbol	Atomic Number	Atomic Mass	Electrons in Shell 1	Electrons in Shell 2	Electrons in Shell 3	Number of Chemical Bonds
Hydrogen	н	1	1	1	0	0	1
Carbon	С	6	12	2	4	0	4
Nitrogen	N	7	14	2	5	0	3
Oxygen	0	8	16	2	6	0	2
Sulfur	s	16	32	2	8	6	2

Chemical Bonds

- A molecule forms when electrons of several atoms interact to form *chemical bonds*.
 - The number of bonds an atom can form is determined by the number of valence electrons.
 - Hydrogen has one electron; it needs one more to fill the inner shell so that it can form one bond.
 - Carbon has 6 electrons; 2 fill the inner shell and 4 are in the next shell. It needs 4 more electrons so that it can form 4 bonds.

- Valence electrons are shared.
 - Nonpolar electrons are shared equally.Example: 2 hydrogen atoms
 - Polar electrons are not shared equally; they have positive and negative ends.
 - Example: water

Water

- Polar molecule
- · Good solvent (substances dissolve in it)
- When split, it can contribute to the pH of a substance.

• Sodium chloride dissociates in water.

Sodium + chlorine \rightarrow

Sodium ions (Na⁺)

Chloride ions (Cl-)

These free ions are critical to many physiological processes.

Hydrogen bond

- Weak bond formed between two polar molecules based on opposite charges attracting (not based on electron sharing)
 - Forms between water molecules
 - Forms between amino acids on a protein to produce the 3D structure of the protein
 - Holds the two strands of the DNA molecule together.

Acids, Bases, and pH

- Some water molecules break to form free hydrogen ions (H⁺) and hydroxide ions (OH⁻).
- When this happens, there are the same number of H⁺ ions as OH⁻ ions in solution, so the solution is neutral.
- A neutral solution is said to have a pH of 7 (which means 10⁻⁷ molar concentration H⁺).

Acids, Bases, and pH

- Sometimes a solution has more H⁺ ions than OH⁻ ions. This is called an acid, and its pH is below 7.
 - Often called a proton donor
- Sometimes a solution has more OH ions than H⁺ ions. This is called a base, and its pH is above 7. (Such solutions are also called alkaline.)
 - Often called a proton acceptor

Organic Molecules

- · Contain carbon and hydrogen
 - Because carbon must form 4 bonds to satisfy the valence shell, it can form chains and rings of carbons while still bonding with other atoms.
 - Two carbons can share 1 or 2 electrons. If 2 are shared, it is a double bond and can bond with 2 additional atoms. If 1 electron is shared, it can bond with 3 additional atoms

Carbon Rings

- Carbons are not shown but are understood to be at the corners of the molecule. Some show double bonds.
- Carbon rings form backbones for more reactive groups of atoms called functional groups.

Functional Groups

 Classes of molecules are named after their functional group.

Stereoisomers

- Two molecules can have exactly the same atoms arranged in exactly the same sequence, but still differ in the spatial organization of their functional groups.
 - This characteristic is critical to function. A given enzyme may interact with one stereoisomer but not with another.
 - The sugars glucose, galactose, and fructose are stereoisomers.

II. Carbohydrates

Carbohydrates

- Organic molecules that contain carbon, hydrogen, and oxygen in a 1:2:1 ratio.
- Serve as a major source of energy in the body
- · Include sugars and starches

Carbohydrates

- Monosaccharide: simple sugar, one carbon ring – Examples: glucose, fructose, galactose
- Disaccharide: two monosaccharides joined by a covalent bond
 - Examples: sucrose, maltose, lactose
- Polysaccharide: several monosaccharides joined together
 - Example: starch (composed of thousands of glucose molecules)

Carbohydrates

- Glycogen: another polysaccharide formed to store sugar in a cell
 - Glycogen does not pull in water via osmosis as simple sugars do.
- · Cellulose: a polysaccharide made by plants
 - Cellulose is not digestible by humans.

Triglycerides (Triglycerols)

- · Include fats and oils
- Composed of one molecule of glycerol and three molecules of fatty acids

Saturated and Unsaturated Fats

- If every carbon on the fatty acid chain shares a single electron, the fatty acid is saturated.
- If there are double bonds between carbons, the fatty acid is unsaturated.

Ketone Bodies

- Hydrolysis of triglycerides forms free fatty acids in the blood. These can be used for energy or converted into ketone bodies by the liver.
 - Strict low-carbohydrate diets and uncontrolled diabetes can result in elevated ketone levels, called ketosis.
 - Ketone levels low enough to lower pH can cause ketoacidosis, which can lead to coma and death.

Phospholipids

- Lipids with a phosphate group, which makes them polar.
 - Major component of cell membranes as a double layer, with hydrophilic phosphates pointing outward on each side and hydrophobic fatty acids and glycerol pointing inward.
 - As micelles, phospholipids can act as surfactants. The polar nature of the molecule decreases the surface tension of water.
 - Surfactant keeps lungs from collapsing.

• A steroid is structurally very different from a triglyceride but nonpolar, so considered a lipid. - 3 six-carbon rings + 1 five-carbon ring + functional groups

Steroids

• Cholesterol is a steroid used (1) as a precursor to steroid hormones, such as testosterone, estrogen, and aldosterone, and (2) to make molecules such as vitamin D and bile salts.

Amino Acids

- An amino acid has an amino group, a carboxyl group, and a functional group.
 - The functional group is what differentiates the 20 amino acids.

Protein Structure

- Attraction to amino acids further away produces bends and folds, creating a specific 3D shape.
 - This is the tertiary structure of the protein.
 - This structure dictates function.
 - Since weak bonds hold tertiary structure together, a protein is easily denatured (unfolded) by changes in pH or temperature.

Protein Structure

- Some functional proteins are composed of multiple polypeptide chains covalently bonded together.
 - This is called the quaternary structure of the protein.
 - Examples are the hemoglobin in blood and the hormone insulin.

Conjugated Proteins

- Sometimes proteins are combined with other molecules:
 - Glycoprotein = Protein + Carbohydrate
 Examples: some hormones
 - Lipoprotein = Protein + Lipid
 Example: in cell membranes, carrier molecules in blood

Table 2.4 Composition of Selected Proteins Found in the Body					
Protein	Number of Polypeptide Chains	Nonprotein Component	Function		
Hemoglobin	4	Heme pigment	Carries oxygen in the blood		
Vyoglobin	1	Heme pigment	Stores oxygen in muscle		
nsulin	2	None	Hormonal regulation of metabolism		
Blood group proteins	1	Carbohydrate	Produces blood types		

Protein Functions

- Structural: collagen fibers in connective tissues; keratin in skin
- Enzymes: assist every chemical process in the body
- · Antibodies: part of the immune system
- Receptors: receive communication from other cells for regulation of cell activity
- Carriers: across cell membranes or in blood

V. Nucleic Acids

Nucleotides

- · Building blocks for nucleic acids
 - Composed of a five-carbon sugar, a phosphate group, and a nitrogenous base
 - Nitrogenous bases fall into two categories:
 - Pyrimidine: a single carbon ring + nitrogen Purine: 2 carbon rings + nitrogen

Deoxyribonucleic Acid (DNA)

- The sugar in this molecule is called deoxyribose and can bind to one of four nitrogenous bases:
 - Guanine
 - Thymine
 - Cytosine
 - Adenine

Ribonucleic Acid (RNA)

- Similar to DNA except:
 - Has ribose sugar instead of deoxyribose
 - Is single-stranded instead of doublestranded
 - Has uracil instead of thymine

Types of RNA

- Three types of RNA are used to take information for assembling a protein out of the nucleus and to actually assemble it: – Messenger RNA
 - Transfer RNA
 - Ribosomal RNA
- Other RNA-related molecules serve important functions in the body: ATP, cAMP, NAD, FAD.