

Autonomic Motor Nerves

- Innervate organs not under voluntary control
- · Effectors include:
 - Cardiac muscle
 - Smooth muscle of visceral organs and blood vessels
 - Glands

Autonomic Neurons

- Somatic motor neurons have cell bodies in the spinal cord and just one neuron traveling from spinal cord to effector.
- The autonomic motor system has two sets of neurons in the PNS.
 - The first has cell bodies in the brain or spinal cord and synapses in an autonomic ganglion.
 - The second has cell bodies in the ganglion and synapses on the effector.

Autonomic Ganglia

 Located in the head, neck, and abdomen as well as in chains along either side of the spinal cord

Visceral Effector Organs

- Somewhat independent of innervation and will not atrophy if a nerve is cut (unlike skeletal muscle)
 - Cardiac muscle and some smooth muscle contract rhythmically without nerve stimulation. Autonomic innervation can speed up or slow down intrinsic contractions.
- Unlike somatic motor neurons (which are always stimulatory), autonomic motor neurons can stimulate or inhibit.

Somatic vs. Autonomic System

Feature	Somatic Motor	Autonomic Motor
Effector organs	Skeletal muscles	Cardiac muscle, smooth muscle, and glands
Presence of ganglia	No ganglia	Cell bodies of postganglionic autonomic fibers located in paravertebral, prevertebral (collateral) and terminal ganglia
Number of neurons from CNS to effector	One	Two
Type of neuromuscular junction	Specialized motor end plate	No specialization of postsynaptic membrane; all areas of smooth muscle cells contain receptor proteins for neurotransmitters
Effect of nerve impulse on muscle	Excitatory only	Either excitatory or inhibitory
Type of nerve fibers	Fast-conducting, thick (9–13µm), and myelinated	Slow-conducting; preganglionic fibers lightly myelinated but thin (3µm); postganglionic fibers unmyelinated and very thin (about 1.0µm)
Effect of denervation	Flaccid paralysis and atrophy	Muscle tone and function persist; target cells sho denervation hypersensitivity

II. Divisions of the Autonomic Nervous System

Sympathetic Division

- Preganglionic neurons come from the thoracic and lumbar regions of the spinal cord.
 - Also called the thoracolumbar division
- They synapse in sympathetic ganglia that run parallel to the spinal cord.
 - These are called the paravertebral ganglia.
 - These ganglia are connected, forming a

sympathetic chain of ganglia.

Sympathetic Preganglionic Neurons

 Myelinated axons exit the spinal cord at ventral roots and diverge into white rami communicantes and then into autonomic ganglia at multiple levels.

Convergence and Divergence

- Because preganglionic neurons can branch and synapse in ganglia at any level, there is:
 - Divergence: One preganglonic neuron synapses on postganglionic neurons at different levels.
 - Convergence: Several preganglionic neurons at different levels synapse on one postganglionic neuron.
- Allows the sympathetic division to act as a single unit through mass activation

Sympathetic Postganglionic Neurons

• Unmyelinated axons of the postganglionic neurons form the gray rami communicantes, which return to the spinal nerve and travel with other spinal neurons to their effectors.

Collateral Ganglia

- Many of the sympathetic neurons that exit the spinal cord below the diaphragm do not synapse in the sympathetic chain of ganglia.
- Instead, they form splanchnic nerves, which synapse in collateral ganglia.
 - Collateral ganglia include celiac, superior mesenteric, and inferior mesenteric ganglia.
 - Postganglionic neurons innervate organs of the digestive, urinary, and reproductive systems.

Adrenal Glands

- The adrenal medulla secretes epinephrine and norepinephrine when stimulated by the sympathetic nervous system.
- Embryologically, the adrenal medulla is a modified ganglion and is innervated directly by preganglionic sympathetic neurons.

Summary of the Sympathetic Division

Table 9.2 The Sympat	thetic Division	
Parts of Body Innervated	Spinal Origin of Preganglionic Fibers	Origin of Postganglionic Fibers
Eye	C8 and T1	Cervical ganglia
Head and neck	T1 to T4	Cervical ganglia
Heart and lungs	T1 to T5	Upper thoracic (paravertebral) ganglia
Upper extremities	T2 to T9	Lower cervical and upper thoracic (paravertebral) gangi
Upper abdominal viscera	T4 to T9	Celiac and superior mesenteric (collateral) ganglia
Adrenal	T10 and T11	Not applicable
Urinary and reproductive systems	T12 to L2	Celiac and interior mesenteric (collateral) ganglia
Lower extremities	T9 to L2	Lumbar and upper sacral (paravertebral) ganglia

Parasympathetic Division

- Preganglionic neurons come from the brain or sacral region of the spinal cord.
 Also called the craniosacral division
- They synapse on ganglia located near or in effector organs.
 Called terminal ganglia

Parasympathetic Division

- Preganglionic neurons do not travel with somatic neurons (as sympathetic postganglionic neurons do).
 - Effectors in the skin and skeletal muscles (sweat glands, blood vessels) receive sympathetic but not parasympathetic innervation.

Cranial Nerves and the Parasympathetic Division

- The occulomotor, facial, glossopharyngeal, and vagus nerves carry parasympathetic preganglionic neurons.
 - Occulomotor: Preganglionic fibers exit midbrain and synapse on the ciliary ganglion.
 - Postganglionic fibers innervate the ciliary muscle of the eye.

Cranial Nerves and the Parasympathetic Division

- Facial nerve: Preganglionic fibers exit the pons and synapse in:
 - Pterygopalatine ganglion: Postganglionic fibers synapse on nasal mucosa, pharynx, palate, and lacrimal glands.
 - Submandibular ganglion: Postganglionic fibers synapse on salivary glands.
 - Glossopharyngeal: Preganglionic fibers synapse on otic ganglion. Postganglionic fibers innervate salivary gland.

Cranial Nerves and the Parasympathetic Division

Vagus: Preganglionic fibers exit medulla, branch into several plexi and nerves, and travel to ganglia within effector organs (heart, lungs, esophagus, stomach, pancreas, liver, intestines).

Sacral Nerves

- Preganglionic nerves from the sacral region of the spinal cord provide innervation to the lower part of the large intestine, rectum, urinary and reproductive organs.
- Terminal ganglia are located within these organs.

		anies, Inc. Permission required for reproduc	tion or display
able 9.3 The Paras	Origin of	Location of	
Nerve	Preganglionic Fibers	Terminal Ganglia	Effector Organs
Oculomotor (third cranial) nerve	Midbrain (cranial)	Ciliary ganglion	Eye (smooth muscle in iris and ciliary body)
Facial (seventh cranial)	Pons (cranial)	Pterygopalatine and submandibular ganglia	Lacrimal, mucous, and salivary glands
Glossopharyngeal (ninth cranial) nerve	Medulla oblongata (cranial)	Otic ganglion	Parotid gland
Vagus (tenth cranial) nerve	Medulla oblongata (cranial)	Terminal ganglia in or near organ	Heart, lungs, gastrointestinal tract, liver, pancreas
Pelvic spinal nerves	S2 to S4 (sacral)	Terminal ganglia near organs	Lower half of large intestine, rectum, urinary bladder, and reproductive organs

Sympathetic Functions

- The sympathetic division activates the body for "fight or flight" through the release of norepinephrine from postganglionic neurons and the secretion of epinephrine from the adrenal medulla.
 - Prepares the body for intense physical activity in emergencies by increasing heart rate and blood glucose levels and by diverting blood to skeletal muscles

Parasympathetic Functions

- The parasympathetic division is antagonistic to the sympathetic division.
- Allows the body to "rest and digest" through the release of ACh from postganglionic neurons
 - Slows heart rate, dilates visceral blood vessels, increases digestive activities

on	of Autono	min Eur
iai v 1	οι Αυιόπο	IIIIC FUI
- ,		
	Copyright © The McGraw-Hill Companies, Inc. Parmission required for rep	
	of Autonomic Nerve Stimulation on Vario	
Effector Organ	Sympethetic Effect	Parasympathetic Effect
č) o		
iris (radial muscle)	Dilation of pupil	-
Iris (sphincter muscle)	-	Constriction of pupil
Cillary muscle	Relaxation (for far vision)	Contraction (for near vision)
Glands		
Lacrimal (test)	-	Stimulation of secretion
Sveat	Stimulation of ascretion	-
Salvary	Saliva becomes thick	increased secretion; saliva becomes thin
Stomach	-	Stimulation of secretion
Intestine	-	Stimulation of secretion
Adrenal medialia	Stimulation of hormone expertion	-
Hear		
Rate	Increased	Decreased
Conduction	Increased rate	Decreased rate
Strength	Increased	-
Altood Weasels	Mostly constriction; affects all organs.	Dilation in a few organs (e.g., penis)
Lungs		
Broechicles (tubes)	Diation	Constriction
Mucous glands	Inhibitos of secretion	Stimulation of secretion
Gastointestina' Nact		
Motility	inhibition of ineveneet.	Stimulation of movement.
Sphinclers.	Classing edimulated	Closing ishibited
Liver	Strinulation of glycagen hydrolysis	-
Adjust Fat Dats	Strinulation of fat hydrolysis	-
Pancreas	Inhibition of exacrine secretions	Stimulation of exactine secretions
Spleen	Cantraction	-
Onary Bladder	Muscle tore aided	Domestion
Anoster Pill Muscles	Erection of her and goose bumps	-
Owne	If preparity centraction; if not preparity relevation	-
/mai	Filmulation	Evention titles to nanodilationi

- These synapses are called cholinergic.

α and β Adrenergic Receptors

- Two types of α (α_1 and α_2)
- Two types of β (β₁ and β₂)
- All act using G-proteins and second messenger systems.
 - β receptors use cAMP.
 - α receptors use a Ca²⁺ second messenger system.

α and β Adrenergic Receptors

· Adrenergic effects in different organs

Organ	Adrenergic Effects of Sympathoadrenal System	Adrenergic Receptor
Eye	Contraction of radial fibers of the iris dilates the pupils	α,
Heart	Increase in heart rate and contraction strength	β, primarily
Skin and visceral vessels	Arterioles constrict due to smooth muscle contraction	α,
Skeletal muscle vessels	Arterioles constrict due to sympathetic nerve activity	α,
	Arterioles dilate due to hormone epinephrine	β
Lungs	Bronchioles (airways) dilate due to smooth muscle relaxation	β2
Stomach and intestine	Contraction of sphincters slows passage of food	α,
Liver	Glycogenolysis and secretion of glucose	α,, β,

α_2 Receptors

- · Located on presynaptic axons
- When stimulated, result in inhibition of norepinephrine release in the synapse
 - May be a negative-feedback system
 - Some drugs to lower blood pressure act on these α_2 receptors to inhibit presynaptic neurons in the brain, inhibiting the whole sympathetic nervous system.

Response to Cholinergic Stimulation

- ACh released from preganglionic neurons of both the sympathetic and parasympathetic division is stimulatory.
- ACh from postganglionic neurons of the parasympathetic division can be stimulatory or inhibitory, depending on receptors.

Cholinergic Receptors

- Nicotinic: found in autonomic ganglia
 Stimulated by ACh
 - Serve as ion channels
- Muscarinic: found in visceral organs

 Five types identified; can be stimulatory or inhibitory (opening K⁺ or Ca²⁺ channels)
 Use G-proteins and second messenger system

	Copyright @	The McGraw-Hill Companies, Inc. Permission required for	or reproduction or display
able 9.6 Ch	17.0	eptors and Responses to Acet	
Receptor	Tissue	Response	Mechanisms
Nicotinic	Skeletal muscle	Depolarization, producing action potentials and muscle contraction	ACh opens cation channel in receptor
Nicotinic	Autonomic ganglia	Depolarization, causing activation of postganglionic neurons	ACh opens cation channel in receptor
Muscarinic (M ₂ , M ₂)	Smooth muscle, glands	Depolarization and contraction of smooth muscle, secretion of glands	ACh activates G-protein coupled receptor, opening Ca ²⁺ channels and increasing cytosolic Ca ²⁺
Muscarinic (M ₂)	Heart	Hyperpolarization, slowing rate of spontaneous depolarization	ACh activates G-protein coupled receptor, opening channels for K ⁺

Other Autonomic Neurotransmitters

- Some postganglionic autonomic neurons are not inactivated by drugs that block ACh or norepinephrine activity.
- Called "nonadrenergic, noncholinergic fibers"
- Proposed neurotransmitters include ATP, vasoactive intestinal peptide, and nitric oxide.

Nonadrenergic, Noncholinergic Fibers

- Important for erection of the penis.
- Parasympathetic neurons innervate blood vessels, causing relaxation and vasodilation using NO.
- NO can also produce smooth muscle relaxation in the stomach, intestines, and urinary bladder.

Organs with Dual Innervation

- Most visceral organs are innervated by both sympathetic and parasympathetic neurons.
- Most of the time these systems are antagonists:
 - Heart rate
 - Digestive functions
 - Pupil diameter

Cooperative Effects

- Occur when both divisions produce different effects that work together to promote a single action:
 - Erection and ejaculation: Parasympathetic division causes vasodilation and erection; sympathetic causes ejaculation
 - Urination: Parasympathetic division aids in urinary bladder contraction; sympathetic helps with bladder muscle tone to control urination.

Complementary Effects

- Occur when both divisions produce similar effects on the same target
 - Salivary gland secretion: Parasympathetic division stimulates secretion of watery saliva; sympathetic constricts blood vessels so the secretion is thicker.

Organs Without Dual Innervation

- The following organs are innervated by the sympathetic division only:
 - Adrenal medulla
 - Arrector pili muscles in skin
 - Sweat glands in skin
 - Most blood vessels
- Regulated by increase and decrease in sympathetic nerve activity
- · Important for body temperature regulation

Control of ANS by the Brain

- Many visceral functions are regulated by autonomic reflexes.
 - Sensory input is sent to brain centers (usually by the vagus nerve), which integrate the information and modify the activity of preganglionic neurons.
 - Medulla oblongata controls many cardiovascular, pulmonary, urinary, reproductive, and digestive functions.

Regulation of the Medulla

- Higher brain regions regulate the medulla.
 - Hypothalamus: major regulatory center of the ANS
 - Limbic system: responsible for autonomic responses during emotional states (blushing, pallor, fainting, sweating, racing heart rate)

	., .	III Companies, Inc. Permission required for reproduction or display
		ensory Input from Afferent Fibers in the Vagus, rs in the Medulla Oblongata
Organs	Type of Receptors	Reflex Effects
Lungs	Stretch receptors	Further inhalation inhibited; increase in cardiac rate and vasodilation stimulated
	Type J receptors	Stimulated by pulmonary congestion—produces feelings of breathlessness and causes a reflex fall in cardiac rate and blood pressure
Aorta	Chemoreceptors	Stimulated by rise in CO ₂ and fall in O ₂ —produces increased rate of breathing, rise in heart rate, and vasoconstriction
	Baroreceptors	Stimulated by increased blood pressure-produces a reflex decrease in heart rate
		Antidiuretic hormone secretion inhibited, thus increasing the volume of urine excrete
Heart	Atrial stretch receptors	And diversity of the secret of the base of the secret of t
Heart	Atrial stretch receptors Stretch receptors in ventricles	Produces a reflex decrease in heart rate and vasodilation
Heart Gastrointestinal tract		
Aorta	Chemoreceptors Baroreceptors	causes a reflex fall in cardiair rate and blood pressure Stimulated by rise in CO, and fall in O, – produces increased rate of bree heart rate, and vasoconstriction Stimulated by Increased blood pressure – produces a reflex decrease in

Summary of Autonomic Functions	
Energy 1-1s biblicate listenant is in Annual	

		Effect of		
	Sympathetic		Paranyrepathetic	
Organ	Action	Recepter'	Action	Receptor*
610				
28				
Radial musicle	Coreacts	-	-	
Circular muscle		-	Centracte	м
Abad				
Sincehial node	Accelerates	8	Decelerates	м
Contractility	increases	9,	Decreases (atris)	м
Vessular Streeth Muscle				
Shin, splanchnic vessels	Contracts	-4		
Skrietel muscle vessels	Fielance	9,		
	Palaces.	M ^{**}		
dronoholar Smoath Muscle	Fadance	5	Curracts	54
Gastoneerine/Text				
Smooth muscle				
Walls	Fatanas	8	Connacts	м
Sphindum	Coretricto	-	Feignes	м
Secretors	Desmanes	~	Increases.	м
Myenteric plexus	MP-604			
Gentourinary Smooth Muscle				
Ballin nal	Fielaxes.	0,	Carinacia	м
Shifting ethilition	Carvatica		Fadares.	м
Utwo, prepart	Parlaceco			
	Contracts	0		
Peris	Epealation		Ireation	м
Skie				
Plenetor sneeth muscle	Contracts	e.,		
Zoosel glands				
Thermonepulatory	Increases	м		
Appentine (shrana)	increases	0	-	